Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15188
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlagoz, Yusuf-
dc.contributor.authorBuyukasik, Engin-
dc.contributor.authorYurtsever, Haydar Baran-
dc.date.accessioned2024-12-25T20:49:21Z-
dc.date.available2024-12-25T20:49:21Z-
dc.date.issued2024-
dc.identifier.issn0219-4988-
dc.identifier.issn1793-6829-
dc.identifier.urihttps://doi.org/10.1142/S0219498826500489-
dc.identifier.urihttps://hdl.handle.net/11147/15188-
dc.description.abstractRecently, right almost-QF (respectively, max-QF) rings that is the rings whose injective right modules are R-projective (respectively, max-projective) were studied by the first two authors. In this paper, our aim is to give some further characterizations of these rings over more general classes of rings, and address several questions about these rings. We obtain characterizations of max-QF rings over several classes of rings including local, semilocal right semihereditary, right non-singular right Noetherian and right non-singular right finite dimensional rings. We prove that for a ring R being right almost-QF and right max-QF are not left-right symmetric. We also show that right almost-QF and right max-QF rings are not closed under factor rings. This leads us to consider the rings all of whose factor rings are almost-QF and max-QF.en_US
dc.description.sponsorshipTUBITAK-The Scientific and Technological Research Council of Turkiye [122F158]en_US
dc.description.sponsorshipThe authors are supported by TUBITAK-The Scientific and Technological Research Council of Turkiye-under the project with reference 122F158. The authors want to express their gratitude to the referee for the very helpful comments and suggestions.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publ Co Pte Ltden_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectInjective modulesen_US
dc.subjectmax-projective modulesen_US
dc.subjectmax-QF ringsen_US
dc.titleOn the Rings Whose Injective Right Modules Are Max-Projectiveen_US
dc.typeArticleen_US
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.wosWOS:001354617500001-
dc.identifier.scopus2-s2.0-85209631103-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1142/S0219498826500489-
dc.authorscopusid57199357224-
dc.authorscopusid6504488611-
dc.authorscopusid57728259000-
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ3-
dc.description.woscitationindexScience Citation Index Expanded-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept01. Izmir Institute of Technology-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.