Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15187
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUnlu, Hueseyin-
dc.contributor.authorYueruem, Ozan Rasit-
dc.contributor.authorYildiz, Ali-
dc.contributor.authorDemirors, Onur-
dc.date.accessioned2024-12-25T20:49:20Z-
dc.date.available2024-12-25T20:49:20Z-
dc.date.issued2024-
dc.identifier.issn0038-0644-
dc.identifier.issn1097-024X-
dc.identifier.urihttps://doi.org/10.1002/spe.3391-
dc.identifier.urihttps://hdl.handle.net/11147/15187-
dc.descriptionYURUM, OZAN RASIT/0000-0001-9254-7633en_US
dc.description.abstractMethodologyIn this research, we conducted a case study to establish a foundation for size measurement and effort estimation in DWH projects. We first applied a productivity-based estimation approach using linear regression with the ISBSG repository to assist organizations without historical data. We then evaluated various machine learning algorithms to improve estimation accuracy. Finally, we tested a combined model that integrates both approaches for estimating effort in external projects.ResultsUsing the ISBSG dataset, linear regression models based on productivity achieved a Mean Magnitude of Relative Error (MMRE) of 0.285. Machine learning algorithms improved accuracy by 22.81%, reducing the MMRE to 0.220. The final model, applied to external projects, yielded MRE values between 0.010 and 0.245.ConclusionThe ISBSG repository is a valuable resource for effort estimation in DWH projects. Combining productivity-based estimation with machine learning enhances accuracy and predictive performance, making it a more reliable approach than traditional models.en_US
dc.description.sponsorshipTrkiye Bilimsel ve Teknolojik Arascedil;timath;rma Kurumu [ARDEB 1001, 121E389]; Scientific and Technological Research Council of Turkey (TUBITAK)en_US
dc.description.sponsorshipThis research is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) ARDEB 1001 (project number: 121E389) program.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCOSMICen_US
dc.subjectdata warehouseen_US
dc.subjecteffort estimationen_US
dc.subjectISBSGen_US
dc.subjectmachine learningen_US
dc.subjectsize measurementen_US
dc.titleApplication of a Size Measurement Standard for Data Warehouse Projectsen_US
dc.typeArticleen_US
dc.authoridYURUM, OZAN RASIT/0000-0001-9254-7633-
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.wosWOS:001356872200001-
dc.identifier.scopus2-s2.0-85209819194-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1002/spe.3391-
dc.authorscopusid57521977500-
dc.authorscopusid56426364500-
dc.authorscopusid36161618000-
dc.authorscopusid55949165100-
dc.authorwosidDemirors, Onur/R-7023-2016-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ1-
dc.description.woscitationindexScience Citation Index Expanded-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

24
checked on Jan 6, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.