Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/15187
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Unlu, Hueseyin | - |
dc.contributor.author | Yueruem, Ozan Rasit | - |
dc.contributor.author | Yildiz, Ali | - |
dc.contributor.author | Demirors, Onur | - |
dc.date.accessioned | 2024-12-25T20:49:20Z | - |
dc.date.available | 2024-12-25T20:49:20Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 0038-0644 | - |
dc.identifier.issn | 1097-024X | - |
dc.identifier.uri | https://doi.org/10.1002/spe.3391 | - |
dc.identifier.uri | https://hdl.handle.net/11147/15187 | - |
dc.description | YURUM, OZAN RASIT/0000-0001-9254-7633 | en_US |
dc.description.abstract | MethodologyIn this research, we conducted a case study to establish a foundation for size measurement and effort estimation in DWH projects. We first applied a productivity-based estimation approach using linear regression with the ISBSG repository to assist organizations without historical data. We then evaluated various machine learning algorithms to improve estimation accuracy. Finally, we tested a combined model that integrates both approaches for estimating effort in external projects.ResultsUsing the ISBSG dataset, linear regression models based on productivity achieved a Mean Magnitude of Relative Error (MMRE) of 0.285. Machine learning algorithms improved accuracy by 22.81%, reducing the MMRE to 0.220. The final model, applied to external projects, yielded MRE values between 0.010 and 0.245.ConclusionThe ISBSG repository is a valuable resource for effort estimation in DWH projects. Combining productivity-based estimation with machine learning enhances accuracy and predictive performance, making it a more reliable approach than traditional models. | en_US |
dc.description.sponsorship | Trkiye Bilimsel ve Teknolojik Arascedil;timath;rma Kurumu [ARDEB 1001, 121E389]; Scientific and Technological Research Council of Turkey (TUBITAK) | en_US |
dc.description.sponsorship | This research is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) ARDEB 1001 (project number: 121E389) program. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | COSMIC | en_US |
dc.subject | data warehouse | en_US |
dc.subject | effort estimation | en_US |
dc.subject | ISBSG | en_US |
dc.subject | machine learning | en_US |
dc.subject | size measurement | en_US |
dc.title | Application of a Size Measurement Standard for Data Warehouse Projects | en_US |
dc.type | Article | en_US |
dc.authorid | YURUM, OZAN RASIT/0000-0001-9254-7633 | - |
dc.department | Izmir Institute of Technology | en_US |
dc.identifier.wos | WOS:001356872200001 | - |
dc.identifier.scopus | 2-s2.0-85209819194 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1002/spe.3391 | - |
dc.authorscopusid | 57521977500 | - |
dc.authorscopusid | 56426364500 | - |
dc.authorscopusid | 36161618000 | - |
dc.authorscopusid | 55949165100 | - |
dc.authorwosid | Demirors, Onur/R-7023-2016 | - |
dc.identifier.wosquality | Q2 | - |
dc.identifier.scopusquality | Q1 | - |
dc.description.woscitationindex | Science Citation Index Expanded | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
crisitem.author.dept | 03.04. Department of Computer Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.