Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15081
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIvanyshyn Yaman, O.-
dc.contributor.authorÖzdemir, G.-
dc.date.accessioned2024-11-25T19:11:35Z-
dc.date.available2024-11-25T19:11:35Z-
dc.date.issued2024-
dc.identifier.issn0044-2267-
dc.identifier.urihttps://doi.org/10.1002/zamm.202300711-
dc.identifier.urihttps://hdl.handle.net/11147/15081-
dc.description.abstractWe consider the inverse interior problem of recovering the surface impedances of the cavity from sources and measurements placed on a curve inside of it. The uniqueness issue is investigated, and a hybrid method is proposed for the numerical solution. The approach takes advantages of both direct and iterative schemes, such as it does not require an initial guess and has an accuracy of a Newton-type method. Presented numerical experiments demonstrate the feasibility and effectiveness of the approach. © 2024 Wiley-VCH GmbH.en_US
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Incen_US
dc.relation.ispartofZAMM Zeitschrift fur Angewandte Mathematik und Mechaniken_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleAn interior inverse generalized impedance problem for the modified Helmholtz equation in two dimensionsen_US
dc.typeArticleen_US
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.scopus2-s2.0-85208553374-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1002/zamm.202300711-
dc.authorscopusid57224111903-
dc.authorscopusid57202253904-
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ2-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextnone-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

18
checked on Dec 2, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.