Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15059
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArabaci, Bahriyenur-
dc.contributor.authorBakir, Rezan-
dc.contributor.authorOrak, Ceren-
dc.contributor.authorYuksel, Asli-
dc.date.accessioned2024-11-25T19:07:22Z-
dc.date.available2024-11-25T19:07:22Z-
dc.date.issued2024-
dc.identifier.issn0960-1481-
dc.identifier.issn1879-0682-
dc.identifier.urihttps://doi.org/10.1016/j.renene.2024.121737-
dc.identifier.urihttps://hdl.handle.net/11147/15059-
dc.descriptionYUKSEL OZSEN, ASLI/0000-0002-9273-2078; Orak, Ceren/0000-0001-8864-5943en_US
dc.description.abstractThis study addresses environmental issues like global warming and wastewater generation by exploring waste-toenergy strategies that produce renewable hydrogen and treat wastewater simultaneously. Cu/g-C3N4 is used to evolve hydrogen from sucrose solution and the impact of reaction parameters such as pH (3, 5, and 7), Cu loading (5, 10, and 15 wt%), catalyst amount (0.1, 0.2, and 0.3 g/L), and oxidant (H2O2) concentration (0, 10, and 20 mM) on the evolved hydrogen amount is examined. Characterization study confirmed successful incorporation of Cu without significantly altering g-C3N4 properties. The highest hydrogen production (1979.25 mu mol g- 1 & sdot;h- 1) is achieved with 0.3 g/L catalyst, 20 mM H2O2, 5 % Cu loading, and pH 3. The experimental study concludes that Cu/g-C3N4 is an effective photocatalyst for renewable hydrogen production. In addition to the experimental investigations, various machine learning (ML) models, including Random Forest, Decision Tree, XGBoost, among others, are employed to analyze the impact of reaction parameters and forecast the quantities of produced hydrogen. Alongside these individual models, an ensemble approach is proposed and utilized. The R2 values of these ML models ranged from 0.9454 to 0.9955, indicating strong predictive performance across the board. Additionally, these models exhibited low error rates, further confirming their reliability in predicting hydrogen evolution.en_US
dc.description.sponsorshipIzmir Institute of Technology Scientific Research Projects Coordination Unit [2023IYTE-1-0001]en_US
dc.description.sponsorship<BOLD>This study was financially supported by Izmir Institute of Technology Scientific Research Projects Coordination Unit (Project No. 2023IYTE-1-0001) . </BOLD> We would like to thank to "Biotechnology and Bioengineering Research and Application Centre" for FTIR analysis and "Centre for Materials Research" for SEM and XRD analysis at Izmir Institute of Technology for their support in catalyst characterization studies.en_US
dc.language.isoenen_US
dc.publisherPergamon-elsevier Science Ltden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHydrogenen_US
dc.subjectPhotocatalysisen_US
dc.subjectWastewateren_US
dc.subjectMachine learningen_US
dc.titleIntegrating experimental and machine learning approaches for predictive analysis of photocatalytic hydrogen evolution using Cu/g-C3N4en_US
dc.typeArticleen_US
dc.authoridYUKSEL OZSEN, ASLI/0000-0002-9273-2078-
dc.authoridOrak, Ceren/0000-0001-8864-5943-
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.volume237en_US
dc.identifier.wosWOS:001349620300001-
dc.identifier.scopus2-s2.0-85207932944-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.renene.2024.121737-
dc.authorscopusid58894412300-
dc.authorscopusid58317678200-
dc.authorscopusid57193603610-
dc.authorscopusid25651163600-
dc.authorwosidOrak, Ceren/ABD-8324-2020-
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
dc.description.woscitationindexScience Citation Index Expanded-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept01. Izmir Institute of Technology-
crisitem.author.dept03.02. Department of Chemical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.