Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/15050
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kahveci, Burak | - |
dc.contributor.author | Polatli, Elifsu | - |
dc.contributor.author | Bastanlar, Yalin | - |
dc.contributor.author | Guven, Sinan | - |
dc.date.accessioned | 2024-11-25T19:06:29Z | - |
dc.date.available | 2024-11-25T19:06:29Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 2470-1343 | - |
dc.identifier.uri | https://doi.org/10.1021/acsomega.4c06450 | - |
dc.identifier.uri | https://hdl.handle.net/11147/15050 | - |
dc.description | Guven, Sinan/0000-0001-5212-5516 | en_US |
dc.description.abstract | Organoids are self-assembled 3D cellular structures that resemble organs structurally and functionally, providing in vitro platforms for molecular and therapeutic studies. Generation of organoids from human cells often requires long and costly procedures with arguably low efficiency. Prediction and selection of cellular aggregates that result in healthy and functional organoids can be achieved by using artificial intelligence-based tools. Transforming images of 3D cellular constructs into digitally processable data sets for training deep learning models requires labeling of morphological boundaries, which often is performed manually. Here, we report an application named OrganoLabeler, which can create large image-based data sets in a consistent, reliable, fast, and user-friendly manner. OrganoLabeler can create segmented versions of images with combinations of contrast adjusting, K-means clustering, CLAHE, binary, and Otsu thresholding methods. We created embryoid body and brain organoid data sets, of which segmented images were manually created by human researchers and compared with OrganoLabeler. Validation is performed by training U-Net models, which are deep learning models specialized in image segmentation. U-Net models, which are trained with images segmented by OrganoLabeler, achieved similar or better segmentation accuracies than the ones trained with manually labeled reference images. OrganoLabeler can replace manual labeling, providing faster and more accurate results for organoid research free of charge. | en_US |
dc.description.sponsorship | T?rkiye Bilimsel ve Teknolojik Arastirma Kurumu [2023-3026, TUBITAK 2211A, 2250, TUBITAK 2250]; Dokuz Eylul University ADEP TSA | en_US |
dc.description.sponsorship | This work is supported by Dokuz Eylul University ADEP TSA 2023-3026 project. E.P. is fellow of YOK 100/2000, TUBITAK 2211A, and 2250 scholarship programs. B.K. is fellow of TUBITAK 2211C and TUBITAK 2250 scholarship program. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Amer Chemical Soc | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | [No Keyword Available] | en_US |
dc.title | OrganoLabeler: A Quick and Accurate Annotation Tool for Organoid Images | en_US |
dc.type | Article | en_US |
dc.authorid | Guven, Sinan/0000-0001-5212-5516 | - |
dc.department | Izmir Institute of Technology | en_US |
dc.identifier.volume | 9 | en_US |
dc.identifier.issue | 46 | en_US |
dc.identifier.startpage | 46117 | en_US |
dc.identifier.endpage | 46128 | en_US |
dc.identifier.wos | WOS:001349022600001 | - |
dc.identifier.scopus | 2-s2.0-85208403354 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1021/acsomega.4c06450 | - |
dc.authorscopusid | 57775962700 | - |
dc.authorscopusid | 57211408767 | - |
dc.authorscopusid | 15833922000 | - |
dc.authorscopusid | 36007314300 | - |
dc.authorwosid | Kahveci, Burak/GXE-9669-2022 | - |
dc.authorwosid | polatlı, elifsu/HOF-7028-2023 | - |
dc.authorwosid | Guven, Sinan/Q-1804-2019 | - |
dc.identifier.wosquality | Q2 | - |
dc.identifier.scopusquality | Q2 | - |
dc.description.woscitationindex | Science Citation Index Expanded | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 03.04. Department of Computer Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.