Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15050
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKahveci, Burak-
dc.contributor.authorPolatli, Elifsu-
dc.contributor.authorBastanlar, Yalin-
dc.contributor.authorGuven, Sinan-
dc.date.accessioned2024-11-25T19:06:29Z-
dc.date.available2024-11-25T19:06:29Z-
dc.date.issued2024-
dc.identifier.issn2470-1343-
dc.identifier.urihttps://doi.org/10.1021/acsomega.4c06450-
dc.identifier.urihttps://hdl.handle.net/11147/15050-
dc.descriptionGuven, Sinan/0000-0001-5212-5516en_US
dc.description.abstractOrganoids are self-assembled 3D cellular structures that resemble organs structurally and functionally, providing in vitro platforms for molecular and therapeutic studies. Generation of organoids from human cells often requires long and costly procedures with arguably low efficiency. Prediction and selection of cellular aggregates that result in healthy and functional organoids can be achieved by using artificial intelligence-based tools. Transforming images of 3D cellular constructs into digitally processable data sets for training deep learning models requires labeling of morphological boundaries, which often is performed manually. Here, we report an application named OrganoLabeler, which can create large image-based data sets in a consistent, reliable, fast, and user-friendly manner. OrganoLabeler can create segmented versions of images with combinations of contrast adjusting, K-means clustering, CLAHE, binary, and Otsu thresholding methods. We created embryoid body and brain organoid data sets, of which segmented images were manually created by human researchers and compared with OrganoLabeler. Validation is performed by training U-Net models, which are deep learning models specialized in image segmentation. U-Net models, which are trained with images segmented by OrganoLabeler, achieved similar or better segmentation accuracies than the ones trained with manually labeled reference images. OrganoLabeler can replace manual labeling, providing faster and more accurate results for organoid research free of charge.en_US
dc.description.sponsorshipT?rkiye Bilimsel ve Teknolojik Arastirma Kurumu [2023-3026, TUBITAK 2211A, 2250, TUBITAK 2250]; Dokuz Eylul University ADEP TSAen_US
dc.description.sponsorshipThis work is supported by Dokuz Eylul University ADEP TSA 2023-3026 project. E.P. is fellow of YOK 100/2000, TUBITAK 2211A, and 2250 scholarship programs. B.K. is fellow of TUBITAK 2211C and TUBITAK 2250 scholarship program.en_US
dc.language.isoenen_US
dc.publisherAmer Chemical Socen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleOrganoLabeler: A Quick and Accurate Annotation Tool for Organoid Imagesen_US
dc.typeArticleen_US
dc.authoridGuven, Sinan/0000-0001-5212-5516-
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.volume9en_US
dc.identifier.issue46en_US
dc.identifier.startpage46117en_US
dc.identifier.endpage46128en_US
dc.identifier.wosWOS:001349022600001-
dc.identifier.scopus2-s2.0-85208403354-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1021/acsomega.4c06450-
dc.authorscopusid57775962700-
dc.authorscopusid57211408767-
dc.authorscopusid15833922000-
dc.authorscopusid36007314300-
dc.authorwosidKahveci, Burak/GXE-9669-2022-
dc.authorwosidpolatlı, elifsu/HOF-7028-2023-
dc.authorwosidGuven, Sinan/Q-1804-2019-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ2-
dc.description.woscitationindexScience Citation Index Expanded-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.