Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/15028
Title: | A Viability Study of Thermal Pre-Treatment for Recycling of Pharmaceutical Blisters | Authors: | Gokelma, Mertol Diaz, Fabian Capkin, Irem Yaren Friedrich, Bernd |
Keywords: | pyrolysis thermal treatment complex scraps multilayer packages waste utilization |
Publisher: | Mdpi | Abstract: | Pharmaceutical packaging is one of the most used packaging types which contains aluminum and plastics. Due to increasing amounts of waste and rising environmental concerns, recycling approaches are being investigated. Since blisters usually contain a balanced amount of plastics and metals, most of the approaches focus on recycling only one material. Therefore, more sustainable recycling approaches which recover both plastic and aluminum fractions are needed. This study investigates the thermal behavior and degradation mechanisms of plastic-rich and aluminum-rich pharmaceutical blisters using various analytical techniques. Structural characterization revealed that plastic-rich blisters have a thicker profile with plastic and aluminum layers, while aluminum-rich blisters consist of plastic layers between aluminum sheets. Thermal degradation analysis showed two main stages for both types: plastic-rich blisters (polyvinyl chloride) exhibited significant weight loss and long-chain hydrocarbon formation between 210 and 285 degrees C, and aluminum-rich blisters (polyamide/nylon) degraded from 240 to 270 degrees C. Differential Scanning Calorimetry and Fourier Transform Infrared Spectroscopy analyses confirmed the endothermic behavior of such a transformation. The gas emissions analysis indicated an increased formation of gasses from the thermal treatment of plastic-rich blisters, with the presence of oxygen leading to the formation of carbon dioxide, water, and carbon monoxide. Thermal treatment with 5% O2 in the carrier gas benefited plastic-rich blister treatment, reducing organic waste by up to 80% and minimizing burning risk, leveraging pyrolytic carbon for protection. This method is unsuitable for aluminum-rich blisters, requiring reduced oxygen or temperature to prevent pyrolytic carbon combustion and aluminum oxidation. | Description: | Friedrich, Prof. Dr.-Ing. Dr. h.c. Bernd/0000-0002-2934-2034; Gokelma, Mertol/0000-0002-0217-6013 | URI: | https://doi.org/10.3390/su16208968 https://hdl.handle.net/11147/15028 |
ISSN: | 2071-1050 |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.