Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14917
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLoesch, J.-
dc.contributor.authorYang, Y.-
dc.contributor.authorEkmekci, P.-
dc.contributor.authorDumontier, M.-
dc.contributor.authorCelebi, R.-
dc.date.accessioned2024-10-25T23:27:23Z-
dc.date.available2024-10-25T23:27:23Z-
dc.date.issued2024-
dc.identifier.issn1613-0073-
dc.description.abstractGraph Neural Networks (GNNs) are powerful tools for graph-related tasks, excelling in progressing graph-structured data while maintaining permutation invariance. However, their challenge lies in the obscurity of new node representations, hindering interpretability. This paper introduces a framework addressing this limitation by explaining GNN predictions. The proposed method takes any GNN prediction, for which it returns a concise subgraph as explanation. Utilizing Saliency Maps, an attribution gradient-based technique, we enhance interpretability by assigning importance scores to entities withing the knowledge graph via backpropagation. Evaluated on the Drug Repurposing Knowledge Graph, Graph Attention Network achieved a Hits@5 score of 0.451 and a Hits@10 score of 0.672. GraphSAGE demonstrated notable results with the highest recall rate of 0.992. Our framework underscores GNN efficacy and interpretability, which is crucial in complex scenarios like drug repurposing. Illustrated through an Alzheimer’s disease case study, our approach provides meaningful and comprehensible explanations for GNN predictions. This work contributes to advancing the transparency and utility of GNNs in real-world applications. © 2024 Copyright for this paper by its authors.en_US
dc.language.isoenen_US
dc.publisherCEUR-WSen_US
dc.relation.ispartofCEUR Workshop Proceedings -- 15th International Conference on Semantic Web Applications and Tools for Health Care and Life Sciences, SWAT4HCLS 2024 -- 20 February 2024 through 26 February 2024 -- Hybrid, Leiden -- 205624.0en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlzheimer’S Diseaseen_US
dc.subjectDrug Repurposingen_US
dc.subjectExplainable Ai (Xai)en_US
dc.subjectGraph Neural Networks (Gnns)en_US
dc.subjectKnowledge Graphs (Kgs)en_US
dc.subjectSaliency Mapsen_US
dc.titleExplaining Graph Neural Network Predictions for Drug Repurposingen_US
dc.typeConference Objecten_US
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume3890en_US
dc.identifier.startpage46en_US
dc.identifier.endpage55en_US
dc.identifier.scopus2-s2.0-85214932139-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.authorscopusid57647825400-
dc.authorscopusid59512946400-
dc.authorscopusid59512327500-
dc.authorscopusid6701759312-
dc.authorscopusid16642228900-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ4-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeConference Object-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

84
checked on Apr 21, 2025

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.