Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14859
Full metadata record
DC FieldValueLanguage
dc.contributor.authorToprak, Kasim-
dc.date.accessioned2024-10-25T23:18:45Z-
dc.date.available2024-10-25T23:18:45Z-
dc.date.issued2024-
dc.identifier.issn0965-0393-
dc.identifier.issn1361-651X-
dc.identifier.urihttps://doi.org/10.1088/1361-651X/ad7bdb-
dc.identifier.urihttps://hdl.handle.net/11147/14859-
dc.description.abstractThe thermal properties of a laminated structure of graphene-coated aluminum composite nanomaterial were investigated through non-equilibrium molecular dynamics (NEMD) simulations to address the problem of temperature deviation in the thermostat volume applied. This paper presents a new insight into the best values of timestep and Langevin thermostat damping parameters for each atom in the nanomaterial with different size configurations using the genetic algorithm (GA) method by considering the timestep and thermostat damping parameters for each atom type, as well as the thickness of the nanomaterial, the thermostat, buffer, and heat flow lengths. The initial population results indicate that the thermostat temperature deviation increases with higher thermostat damping coefficients and timestep. However, the deviation decreases significantly with increased heat flow and thermostat lengths. Variations in buffer length and aluminum thickness do not have a significant effect on temperature. The application of a GA for optimization leads to a decrease in thermostat temperature deviation. The optimized parameters resulted in better thermostat temperature deviations when analyzing the temperature, aluminum thickness, and both buffer and thermostat lengths. Additionally, the thermal conductivity of aluminum-graphene nanomaterial decreases with increasing temperature, buffer length, and aluminum thickness, but increases by up to 9.85% with increasing thermostat length.en_US
dc.language.isoenen_US
dc.publisherIop Publishing Ltden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectgenetic algorithmen_US
dc.subjectthermal propertiesen_US
dc.subjectLangevin thermostaten_US
dc.subjectoptimization, aluminum-grapheneen_US
dc.titleGenetic algorithm optimization of langevin thermostat and thermal properties of graphene-aluminum nanocomposites: a molecular dynamicsen_US
dc.typeArticleen_US
dc.institutionauthorToprak, Kasim-
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.volume32en_US
dc.identifier.issue8en_US
dc.identifier.wosWOS:001321538800001-
dc.identifier.scopus2-s2.0-85205914991-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1088/1361-651X/ad7bdb-
dc.authorscopusid36912081800-
dc.authorwosidTOPRAK, KASIM/IAN-8968-2023-
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ3-
dc.description.woscitationindexScience Citation Index Expanded-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
item.fulltextNo Fulltext-
crisitem.author.dept03.10. Department of Mechanical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

2
checked on Oct 28, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.