Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14829
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarpani,F.-
dc.contributor.authorOthman,N.H.-
dc.contributor.authorAlias,N.H.-
dc.contributor.authorMat Shayuti,M.S.-
dc.contributor.authorAltinkaya,S.A.-
dc.date.accessioned2024-09-24T15:58:54Z-
dc.date.available2024-09-24T15:58:54Z-
dc.date.issued2024-
dc.identifier.isbn978-044313935-2-
dc.identifier.isbn978-044313936-9-
dc.identifier.urihttps://doi.org/10.1016/B978-0-443-13935-2.00004-8-
dc.identifier.urihttps://hdl.handle.net/11147/14829-
dc.description.abstractNanocomposite membranes have emerged as a promising solution for efficient carbon dioxide (CO2) removal in gas separation processes. These membranes combine polymeric matrices with inorganic nanofillers to synergize the excellent separation performance of inorganic materials with the mechanical stability of polymers. The choice of nanofillers, such as porous and nonporous materials, significantly influences the gas permeability and selectivity of the resulting nanocomposite membranes. Porous fillers with interstitial channels and large surface areas are found to selectively adsorb CO2, enhancing membrane separation performance. On the other hand, nonporous fillers alter the polymer chain orientation, influencing gas separation differently. The 1D, 2D, and 3D morphologies of nanofillers offer unique properties in terms of surface-to-volume ratio, permeability, and selectivity. The fabrication of nanocomposite membranes also plays a crucial role, and advances in materials and manufacturing techniques have enabled the design of high-performing membranes. Asymmetric and symmetric configurations have been explored to optimize separation efficiency. Nevertheless, challenges such as aging, compaction, and swelling need to be addressed to ensure the long-term stability of nanocomposite membranes. Future research should focus on developing advanced theoretical models to better predict gas permeation behaviors in these membranes. Overall, nanocomposite membranes offer a promising avenue for efficient CO2 removal, contributing to sustainable environmental practices and energy production. © 2024 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofWoodhead Publishing Series in Composites Science and Engineering: Nanocomposites for Environmental, Energy, and Agricultural Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCO<sub>2</sub> separationen_US
dc.subjectmetal organic frameworken_US
dc.subjectNanocomposite membraneen_US
dc.subjectnanofilleren_US
dc.subjectnanoparticlesen_US
dc.titleAdvances in nanocomposite membranes for CO2 removalen_US
dc.typeBook Parten_US
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.startpage97en_US
dc.identifier.endpage123en_US
dc.identifier.scopus2-s2.0-85203235218-
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.identifier.doi10.1016/B978-0-443-13935-2.00004-8-
dc.authorscopusid56084046400-
dc.authorscopusid55585106400-
dc.authorscopusid55992591000-
dc.authorscopusid55672301600-
dc.authorscopusid6603259612-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeBook Part-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

30
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.