Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/14815
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ağralı,M. | - |
dc.contributor.author | Tekir,S. | - |
dc.date.accessioned | 2024-09-24T15:58:52Z | - |
dc.date.available | 2024-09-24T15:58:52Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 979-835038896-1 | - |
dc.identifier.uri | https://doi.org/10.1109/SIU61531.2024.10600801 | - |
dc.identifier.uri | https://hdl.handle.net/11147/14815 | - |
dc.description | Berdan Civata B.C.; et al.; Figes; Koluman; Loodos; Tarsus University | en_US |
dc.description.abstract | Pre-trained language models have introduced significant performance boosts in natural language processing. Fine-tuning of these models using downstream tasks' supervised data further improves the acquired results. In the fine-tuning process, combining the learning of tasks is an effective approach. This paper proposes a multi-task learning framework based on BERT. To accomplish the tasks of sentiment analysis, paraphrase detection, and semantic text similarity, we include linear layers, a Siamese network with cosine similarity, and convolutional layers to the appropriate places in the architecture. We conducted an ablation study using Stanford Sentiment Treebank (SST), Quora, and SemEval STS datasets for each task to test the framework and its components' effectiveness. The results demonstrate that the proposed multi-task framework improves the performance of BERT. The best results obtained for sentiment analysis, paraphrase detection, and semantic text similarity are accuracies of 0.534 and 0.697 and a Pearson correlation coefficient of 0.345. © 2024 IEEE. | en_US |
dc.language.iso | tr | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedings -- 32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 -- 15 May 2024 through 18 May 2024 -- Mersin -- 201235 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | multi-task learning | en_US |
dc.subject | paraphrase detection | en_US |
dc.subject | semantic textual similarity | en_US |
dc.subject | sentiment analysis | en_US |
dc.title | Improvements on a Multi-task BERT Model; | en_US |
dc.title.alternative | Çok Görevli BERT Modeli Üzerinde Iyileştirmeler | en_US |
dc.type | Conference Object | en_US |
dc.department | Izmir Institute of Technology | en_US |
dc.identifier.scopus | 2-s2.0-85200919611 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1109/SIU61531.2024.10600801 | - |
dc.authorscopusid | 58156314700 | - |
dc.authorscopusid | 16234844500 | - |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | tr | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.