Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14785
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSoygazi,F.-
dc.contributor.authorÇiftçi,O.-
dc.contributor.authorKök,U.-
dc.contributor.authorCengiz,S.-
dc.date.accessioned2024-09-24T15:55:49Z-
dc.date.available2024-09-24T15:55:49Z-
dc.date.issued2021-
dc.identifier.isbn978-166542908-5-
dc.identifier.urihttps://doi.org/10.1109/UBMK52708.2021.9559013-
dc.identifier.urihttps://hdl.handle.net/11147/14785-
dc.description.abstractQuestion answering(QA) is a field in natural language processing and information retrieval, it aims to give answers to the questions using natural language. In this paper, we present the Turkish question answering dataset, which is THQuAD and baseline results with contextualized word embeddings. THQuAD consists of two different datasets one of them is TQuad on Turkish Islamic Science history within the scope of Teknofest 2018 "Artificial Intelligence competition", the second dataset on Ottoman history within the scope of Teknofest 2020 "Dogal Dil íçleme Yarismasi" prepared by us. THQuAD is a reading comprehension dataset, consisting of questions, answers, and passages. Our objective is to give an answer to a specific question by understanding the passage and extracting the answer from this passage. We generate contextualized word embeddings from pre-trained Turkish Bert, Electra, Albert language models after fine-tuning on different hyperparameters with neural networks. © 2021 IEEEen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 6th International Conference on Computer Science and Engineering, UBMK 2021 -- 6th International Conference on Computer Science and Engineering, UBMK 2021 -- 15 September 2021 through 17 September 2021 -- Ankara -- 176826en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectContextualized word embeddingsen_US
dc.subjectDeep learningen_US
dc.subjectInformation retrievalen_US
dc.subjectNatural language understandingen_US
dc.subjectQuestion answeringen_US
dc.titleTHQuAD: Turkish Historic Question Answering Dataset for Reading Comprehensionen_US
dc.typeConference Objecten_US
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.startpage215en_US
dc.identifier.endpage220en_US
dc.identifier.scopus2-s2.0-85125851915-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/UBMK52708.2021.9559013-
dc.authorscopusid57220960947-
dc.authorscopusid57456792900-
dc.authorscopusid57478574400-
dc.authorscopusid57478710900-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

11
checked on Nov 15, 2024

Page view(s)

28
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.