Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14667
Title: Fractional Duals of the Poisson Process on Time Scales with Applications in Cryptography
Authors: Gharari, Fatemeh
Hematpour, Nafiseh
Bakouch, Hassan S.
Popovic, Predrag M.
Keywords: Fractional Calculus
Mittag-Leffler Function
Poisson Process
Cryptography
Substitution boxes (S-boxes)
Publisher: Springernature
Abstract: A super-structure system for probability densities, covering not just typical types but also fractional ones, was developed using the time scale theory. From a mathematical point of view, we discover duals of the Poisson process on the time scale T=R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}=\mathbb {R}$$\end{document} for the time scales T=Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}=\mathbb {Z}$$\end{document} and T=qZ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb {T}=q<^>{\mathbb {Z}},$$\end{document} evaluating del-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla -$$\end{document}calculus and Delta-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta -$$\end{document}calculus. Also, we search the fractional extensions of the Poisson process on these time scales and detect duals of them. A simulation allows for comparing the nabla and delta types of the observed distributions, not just typical types but also fractional ones. As an application, we also propose new substitution boxes (S-boxes) using the proposed stochastic models and compare the performance of S-boxes created in this way. Given that the S-box is the core for confusion in Advanced Encryption Standard (AES), the formation of these new S-boxes represents an interesting application of these stochastic models.
URI: https://doi.org/10.1007/s40840-024-01737-w
https://hdl.handle.net/11147/14667
ISSN: 0126-6705
2180-4206
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

Page view(s)

18
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.