Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/14667
Title: | Fractional Duals of the Poisson Process on Time Scales With Applications in Cryptography | Authors: | Gharari, Fatemeh Hematpour, Nafiseh Bakouch, Hassan S. Popovic, Predrag M. |
Keywords: | Fractional Calculus Mittag-Leffler Function Poisson Process Cryptography Substitution boxes (S-boxes) |
Publisher: | Springernature | Abstract: | A super-structure system for probability densities, covering not just typical types but also fractional ones, was developed using the time scale theory. From a mathematical point of view, we discover duals of the Poisson process on the time scale T=R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}=\mathbb {R}$$\end{document} for the time scales T=Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}=\mathbb {Z}$$\end{document} and T=qZ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb {T}=q<^>{\mathbb {Z}},$$\end{document} evaluating del-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla -$$\end{document}calculus and Delta-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta -$$\end{document}calculus. Also, we search the fractional extensions of the Poisson process on these time scales and detect duals of them. A simulation allows for comparing the nabla and delta types of the observed distributions, not just typical types but also fractional ones. As an application, we also propose new substitution boxes (S-boxes) using the proposed stochastic models and compare the performance of S-boxes created in this way. Given that the S-box is the core for confusion in Advanced Encryption Standard (AES), the formation of these new S-boxes represents an interesting application of these stochastic models. | URI: | https://doi.org/10.1007/s40840-024-01737-w https://hdl.handle.net/11147/14667 |
ISSN: | 0126-6705 2180-4206 |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.