Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14662
Title: Exercise and resting periods: Thermal comfort dynamics in gym environments
Authors: Avci, Ali Berkay
Balci, Goerkem Aybars
Basaran, Tahsin
Keywords: physical exercise
gradient boosting
thermoregulation
fitness
thermal comfort
Publisher: Tsinghua Univ Press
Abstract: Physical exercise spaces emerged as popular facilities due to recognizing the significance of physical well-being. This study investigates the relationship among physiological responses, human body energy transfer modes, and indoor environmental conditions in influencing thermal comfort perception within indoor physical exercise space. Seven male participants engaged in a 30 min constant-work-rate cycling exercise and a 20 min resting period in a climatic chamber. The physiological and environmental responses were recorded during the experiments, and the body's energy transfer modes were calculated using the collected data. The dataset was prepared using the 2 min averages of the collected data and calculated parameters across the experiment phases, including the features of skin temperature, core temperature, skin relative humidity, heart rate, oxygen consumption, body's heat transfer rates through convection, radiation, evaporation, and respiration, net metabolic heat production rate (metabolic rate minus external work rate), indoor air temperature, indoor relative humidity, air velocity, and radiant temperature. Gradient boosting regressor (GBR) was selected as the analyzing method to estimate predicted mean vote (PMV) and thermal sensation vote (TSV) indices during exercise and resting periods using features determined in the study. Thus, the four GBR models were defined as PMV-Exercise, PMV-Resting, TSV-Exercise, and TSV-Resting. In order to optimize the models' performances, the hyperparameter tuning process was executed using the GridSearchCV method. A permutation feature importance analysis was performed, emphasizing the significance of net metabolic heat production rate (24.2%), radiant temperature (17.0%), and evaporative heat transfer rate (13.1%). According to the results, PMV-Exercise, PMV-Resting, and TSV-Resting GBR models performed better, while TSV-Exercise faced challenges in predicting exercise thermal sensations. Critically, this study addresses the need to understanding the interrelationship among physiological responses, environmental conditions, and human body energy transfer modes during both exercise and resting periods to optimize thermal comfort within indoor exercise spaces. The results of this study contribute to the operation of indoor gym environments to refine their indoor environmental parameters to optimize users' thermal comfort and well-being. The study is limited to a small sample size consisting solely of male participants, which may restrict the generalizability of the findings. Future research could explore personalized thermal comfort control systems and synergies between comfort optimization and energy efficiency in indoor exercise spaces.
Description: AVCI, Ali Berkay/0000-0001-8291-4567
URI: https://doi.org/10.1007/s12273-024-1142-5
https://hdl.handle.net/11147/14662
ISSN: 1996-3599
1996-8744
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 22, 2024

Page view(s)

50
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.