Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14659
Title: Investigation of the experimental and theoretical band gap of PbVO3Cl for use in energy conversion devices
Authors: Harmanli, Ipek
Aytekin, Ahmet
Gol, Emre Yusuf
Eanes, Mehtap
Karabudak, Engin
Keywords: PbVO3Cl
Semiconductor
Band gap
Theoretical efficiency
Publisher: Pergamon-elsevier Science Ltd
Abstract: The major goal of the research described in this paper is to investigate the structure of electronic band and band gap of the novel semiconductor lead (II) trioxovanadate (V) chloride (PbVO3Cl). 3 Cl). Depending on both experimental and theoretical (computational) results, the utility of PbVO3Cl 3 Cl as a semiconductor in solar fuel devices was discussed. The optical band gap was determined experimentally by applying Tauc Plot method to the absorption spectra of PbVO3Cl. 3 Cl. Additionally, computational approaches for the structure prediction of PbVO3Cl 3 Cl have been studied. The electronic band structures were examined theoretically using local density (LDA), generalized gradient (GGA), and hybrid (HSE06) approximations. PbVO3Cl, 3 Cl, which has an optical band gap of about 2.2 eV, has been shown to have promising photocatalytic properties. As a result of these approximations, the transition type of PbVO3Cl 3 Cl was determined as indirect. We also discussed the potential future application of PbVO3Cl 3 Cl in Lewis solar fuel devices as a combination of the photoanode and Si photocathode. And the solar efficiency of the PbVO3Cl-Si 3 Cl-Si double-layer semiconductor system was calculated. Further experimental proofs can be important.
URI: https://doi.org/10.1016/j.ssc.2024.115645
https://hdl.handle.net/11147/14659
ISSN: 0038-1098
1879-2766
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

Page view(s)

10
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.