Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14634
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCiftci, Okan-
dc.contributor.authorSoygazi, Fatih-
dc.contributor.authorTekir, Selma-
dc.date.accessioned2024-09-24T15:44:11Z-
dc.date.available2024-09-24T15:44:11Z-
dc.date.issued2024-
dc.identifier.issn1300-0632-
dc.identifier.issn1303-6203-
dc.identifier.urihttps://doi.org/10.55730/1300-0632.4085-
dc.identifier.urihttps://search.trdizin.gov.tr/en/yayin/detay/1252358/enrichment-of-turkish-question-answering-systems-using-knowledge-graphs-
dc.identifier.urihttps://hdl.handle.net/11147/14634-
dc.descriptionSOYGAZI, FATIH/0000-0001-8426-2283en_US
dc.description.abstractRecent capabilities of large language models (LLMs) have transformed many tasks in Natural Language Processing (NLP), including question answering. The state-of-the-art systems do an excellent job of responding in a relevant, persuasive way but cannot guarantee factuality. Knowledge graphs, representing facts as triplets, can be valuable for avoiding errors and inconsistencies with real-world facts. This work introduces a knowledge graph-based approach to Turkish question answering. The proposed approach aims to develop a methodology capable of drawing inferences from a knowledge graph to answer complex multihop questions. We construct the Beyazperde Movie Knowledge Graph (BPMovieKG) and the Turkish Movie Question Answering dataset (TRMQA) to answer questions in the movie domain. We evaluate our proposed question answering pipeline against a baseline study. Furthermore, we compare it with a question answering system built upon GPT-3.5 Turbo to answer the 1-hop questions from TRMQA. The experimental results confirm that link prediction on a knowledge graph is quite effective in answering questions that require reasoning paths. Finally, we provide insights into the pros and cons of the provided solution through a qualitative study.en_US
dc.description.sponsorshipWe thank Serap Sahin for participating in our meetings during the earlier phases of this project. We also thank anonymous reviewers for their valuable comments.en_US
dc.language.isoenen_US
dc.publisherTubitak Scientific & Technological Research Council Turkeyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectKnowledge representation and reasoningen_US
dc.subjectquestion answering systemsen_US
dc.subjectnatural language processingen_US
dc.subjectdeep learningen_US
dc.subjectgraph embeddingsen_US
dc.titleEnrichment of Turkish Question Answering Systems Using Knowledge Graphsen_US
dc.typeArticleen_US
dc.authoridSOYGAZI, FATIH/0000-0001-8426-2283-
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.volume32en_US
dc.identifier.issue4en_US
dc.identifier.wosWOS:001280878700002-
dc.identifier.scopus2-s2.0-85200201498-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.55730/1300-0632.4085-
dc.authorscopusid57456792900-
dc.authorscopusid57220960947-
dc.authorscopusid16234844500-
dc.authorwosidSoygazi, Fatih/ABN-0409-2022-
dc.identifier.trdizinid1252358-
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ3-
dc.description.woscitationindexScience Citation Index Expanded-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

50
checked on Jan 6, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.