Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14560
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSavaci,F.A.-
dc.contributor.authorTamci,E.-
dc.date.accessioned2024-06-19T14:28:54Z-
dc.date.available2024-06-19T14:28:54Z-
dc.date.issued2023-
dc.identifier.isbn979-835036049-3-
dc.identifier.urihttps://doi.org/10.1109/ELECO60389.2023.10416084-
dc.identifier.urihttps://hdl.handle.net/11147/14560-
dc.description.abstractFinite variance Gaussian time series are insufficient in forecasting irregular and sudden changes in electricity production and consumption due to the complexity of today's power grids. Such Levy type fluctuations in the generation and/or consumption of electricity might inevitably result in the impulsive behavior in the electricity prices. For this reason, using the alpha-stable time series (alpha(α)-stable Levy process), which have infinite variance and heavy-tailed distributions will be a more appropriate model for price forecasting. In this study, we have tested the alpha-stablePeriodic Autoregressive (PAR) time series with real data obtained from TURKISH MARKET & FINANCIAL SETTLEMENT CENTER (EPIAŞ) electricity prices and have compared this model with previously made forecasting stochastic models such as Gaussian-driven Autoregressive (AR). Our findings not only demonstrated the effectiveness of the alpha-stablePAR time series method in estimating electricity prices but also highlighted its superiority over the Gaussian-driven AR model for Turkish electricity prices. © 2023 IEEE.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (121E181)en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof14th International Conference on Electrical and Electronics Engineering, ELECO 2023 - Proceedings -- 14th International Conference on Electrical and Electronics Engineering, ELECO 2023 -- 30 November 2023 through 2 December 2023 -- Virtual, Bursa -- 197135en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleForecasting Turkey Electricity Prices by Alpha-StablePeriodic AutoRegressive Time Seriesen_US
dc.typeConference Objecten_US
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.scopus2-s2.0-85185829512-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/ELECO60389.2023.10416084-
dc.authorscopusid6507858471-
dc.authorscopusid57105750700-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeConference Object-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextnone-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

66
checked on Dec 2, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.