Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14539
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDeveci, Hamza Arda-
dc.contributor.authorArtem, Hatice Secil-
dc.contributor.authorGuenes, Mehmet Deniz-
dc.contributor.authorTanoglu, Metin-
dc.date.accessioned2024-06-19T14:28:48Z-
dc.date.available2024-06-19T14:28:48Z-
dc.date.issued2024-
dc.identifier.issn0731-6844-
dc.identifier.issn1530-7964-
dc.identifier.urihttps://doi.org/10.1177/07316844241256815-
dc.identifier.urihttps://hdl.handle.net/11147/14539-
dc.description.abstractThis article introduces a design procedure to find the optimum fiber orientations of carbon/epoxy composite laminates for fatigue life advancement. The approach incorporates a fatigue failure tensor polynomial model and employs a hybrid algorithm, combining particle swarm optimization and sequential quadratic programming. Firstly, material properties of quasi-static and fatigue of the carbon/epoxy composites, fabricated by the vacuum-assisted resin transfer molding method, were determined to be used in the model. Various design problems involving two optimization scenarios were then solved using the hybrid algorithm. The algorithm's performance was also evaluated by specific test problems, confirming its speed and robustness. The optimally fiber-oriented carbon/epoxy composite laminates having maximum fatigue lives were obtained for many critical in-plane cyclic loading cases. To validate the proposed design procedure, two optimum designs were experimentally verified under uniaxial loading conditions. The results indicated a good correlation between the estimated fatigue life of the optimally designed laminates and experimental data. This methodology offers a promising approach for the design of carbon/epoxy composite laminates with superior fatigue strength, particularly significant in specific industrial applications.en_US
dc.language.isoenen_US
dc.publisherSage Publications Ltden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFatigueen_US
dc.subjectfatigue life prediction modelen_US
dc.subjectoptimizationen_US
dc.subjectcarbon/epoxy composite laminatesen_US
dc.subjectparticle swarm optimization-sequential quadratic programming hybrid algorithmen_US
dc.titleFatigue-resistant design of carbon/epoxy composites based on a failure tensor polynomial model by particle swarm optimization-sequential quadratic programming algorithmen_US
dc.typeArticleen_US
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.wosWOS:001235898800001-
dc.identifier.scopus2-s2.0-85194821289-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1177/07316844241256815-
dc.authorscopusid57190491155-
dc.authorscopusid23388598600-
dc.authorscopusid57198266199-
dc.authorscopusid6602756777-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ2-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.dept03.10. Department of Mechanical Engineering-
crisitem.author.dept03.10. Department of Mechanical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

78
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.