Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14430
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBakır,R.-
dc.contributor.authorOrak,C.-
dc.contributor.authorYüksel,A.-
dc.date.accessioned2024-05-05T14:59:54Z-
dc.date.available2024-05-05T14:59:54Z-
dc.date.issued2024-
dc.identifier.issn0360-3199-
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2024.04.173-
dc.identifier.urihttps://hdl.handle.net/11147/14430-
dc.description.abstractHydrogen, as a clean and versatile energy carrier, plays a pivotal role in addressing global energy challenges and transitioning towards sustainable energy systems. This study explores the convergence of machine learning (ML) for photocatalytic hydrogen evolution from sucrose solution using perovskite-type catalysts, namely LaFeO3 (LFO) and graphene-supported LaFeO3 (GLFO). This study pioneers the practical application of ML techniques, including Random Forests, LightGBM, and Bagging Regressor, to predict hydrogen yields in the presence of these photocatalysts. LFO and GLFO underwent a thorough characterization study to validate their successful preparation. Noteworthy, the highest hydrogen yield from the sucrose model solution was achieved using GLFO as 3.52 mmol/gcat. The optimum reaction conditions were experimentally found to be pH = 5.25, 0.15 g/L of catalyst amount, and 7.5 mM of HPC (hydrogen peroxide concentration). A pivotal contribution of this research lies in the practical application of ML models, culminating in the development of an ensemble model. This collaborative approach not only achieved an overall R2 of 0.92 but also demonstrated exceptional precision, as reflected in remarkably low error metrics. The mean squared logarithmic error (MSLE) was 0.0032, and the mean absolute error (MAE) was 0.049, underscoring the effectiveness of integrating diverse ML algorithms. This study advances both the understanding of photocatalytic hydrogen evolution and the practical implementation of ML in predicting intricate chemical reactions. © 2024 Hydrogen Energy Publications LLCen_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofInternational Journal of Hydrogen Energyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEnergyen_US
dc.subjectHydrogenen_US
dc.subjectMachine learningen_US
dc.subjectPhotocatalysisen_US
dc.subjectSucroseen_US
dc.titleOptimizing hydrogen evolution prediction: A unified approach using random forests, lightGBM, and Bagging Regressor ensemble modelen_US
dc.typeArticleen_US
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.volume67en_US
dc.identifier.startpage101en_US
dc.identifier.endpage110en_US
dc.identifier.scopus2-s2.0-85190721373-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.ijhydene.2024.04.173-
dc.authorscopusid58317678200-
dc.authorscopusid57193603610-
dc.authorscopusid25651163600-
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityN/A-
item.grantfulltextnone-
item.openairetypeArticle-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

40
checked on Jul 15, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.