Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14420
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTenekeci,S.-
dc.contributor.authorTekir,S.-
dc.date.accessioned2024-05-05T14:59:36Z-
dc.date.available2024-05-05T14:59:36Z-
dc.date.issued2024-
dc.identifier.issn1476-9271-
dc.identifier.urihttps://doi.org/10.1016/j.compbiolchem.2024.108040-
dc.identifier.urihttps://hdl.handle.net/11147/14420-
dc.description.abstractIdentification of promoters, enhancers, and their interactions helps understand genetic regulation. This study proposes a graph-based semi-supervised learning model (GCN4EPI) for the enhancer-promoter classification problem. We adopt a graph convolutional network (GCN) architecture to integrate interaction information with sequence features. Nodes of the constructed graph hold word embeddings of DNA sequences while edges hold the Enhancer-Promoter Interaction (EPI) information. By means of semi-supervised learning, much less data (16%) and time are needed in model training. Comparisons on a benchmark dataset of six human cell lines show that the proposed approach outperforms the state-of-the-art methods by a large margin (10% higher F1 score) and has the fastest training time (up to 3 times). Moreover, GCN4EPI's performance on cross-cell line data is also better than the baselines (3% higher F1 score). Our qualitative analyses with graph explainability models prove that GCN4EPI learns from both text and graph structure. The results suggest that integrating interaction information with sequence features improves predictive performance and compensates for the number of training instances. © 2024en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofComputational Biology and Chemistryen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEnhanceren_US
dc.subjectGraph convolutional networksen_US
dc.subjectNatural language processingen_US
dc.subjectPromoteren_US
dc.subjectSequence analysisen_US
dc.titleIdentifying promoter and enhancer sequences by graph convolutional networksen_US
dc.typeArticleen_US
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.volume110en_US
dc.identifier.wosWOS:001209523700001-
dc.identifier.scopus2-s2.0-85186593399-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.compbiolchem.2024.108040-
dc.authorscopusid57340107000-
dc.authorscopusid16234844500-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ2-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

152
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.