Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14394
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEsen,B.N.-
dc.contributor.authorUzuner,S.-
dc.contributor.authorSezgin,H.T.-
dc.date.accessioned2024-05-05T14:59:29Z-
dc.date.available2024-05-05T14:59:29Z-
dc.date.issued2024-
dc.identifier.issn2190-6815-
dc.identifier.urihttps://doi.org/10.1007/s13399-024-05646-7-
dc.identifier.urihttps://hdl.handle.net/11147/14394-
dc.description.abstractPectic enzyme groups, particularly polygalacturonase and pectin lyase, are vital components of a high-value microbial enzyme category widely employed in applications within the fruit juice and wine industries. The exploration of alternative carbon and nitrogen sources remains crucial for enhancing enzyme production while reducing costs. This study evaluates the impact of carbon (black carrot pomace) and nitrogen (pea protein) loading on fermentable sugar content, protein content, and enzyme activities during both batch and fed-batch cultivation. Additionally, three distinct valorization techniques—thermal (steam), thermochemical (steam assisted with dilute acid), and microwave-assisted with dilute acid pretreatments—were assessed for their effectiveness in hydrolyzing black carrot pomace as a carbon source. The findings indicate that microwave-assisted dilute acid, coupled with enzymatic saccharification, resulted in the highest fermentable sugar production (0.493 g/g), achieving an 87.3% conversion yield. Pea protein demonstrated more favorable outcomes with the highest polygalacturonase activity (20.50 ± 0.52 U/L) and pectin lyase activity (46.44 ± 3.45 U/L) compared to whey protein and yeast extract used as nitrogen sources. Meanwhile, the highest polygalacturonase and pectin lyase activity, along with the highest total protein content (52.25 ± 0.06 mg/L), was recorded under the same culture conditions, reaching 164.34 ± 2.26 and 188.22 ± 1.72 U/L, respectively, after 72 h, representing approximately 1.18- and 1.34-fold increases from the batch system. Consequently, these results prove that fed-batch cultivation, utilizing black carrot pomace hydrolyzate as a feeding substrate and pea protein as a nitrogen source, significantly increases polygalacturonase and pectin lyase activity compared to batch cultivation. © The Author(s) 2024.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofBiomass Conversion and Biorefineryen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBatch fermentationen_US
dc.subjectFed-batch fermentationen_US
dc.subjectNitrogen sourceen_US
dc.subjectPectin lyaseen_US
dc.subjectPolygalacturanaseen_US
dc.titleValorization of black carrot pomace and pea powder for co-production of polygalacturonase and pectin lyaseen_US
dc.typeArticleen_US
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.wosWOS:001207707800001-
dc.identifier.scopus2-s2.0-85191159469-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s13399-024-05646-7-
dc.authorscopusid58999615800-
dc.authorscopusid55211022900-
dc.authorscopusid58999001200-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ2-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 9, 2024

Page view(s)

38
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.