Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/14312
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yönder,V.M. | - |
dc.contributor.author | İpek,E. | - |
dc.contributor.author | Çetin,T. | - |
dc.contributor.author | Çavka,H.B. | - |
dc.contributor.author | Apaydın,M.S. | - |
dc.contributor.author | Doğan,F. | - |
dc.date.accessioned | 2024-03-03T16:41:31Z | - |
dc.date.available | 2024-03-03T16:41:31Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 978-303151025-0 | - |
dc.identifier.issn | 3029-743 | - |
dc.identifier.uri | https://doi.org/10.1007/978-3-031-51026-7_34 | - |
dc.identifier.uri | https://hdl.handle.net/11147/14312 | - |
dc.description.abstract | Classifying architectural structures is an important and challenging task that requires expertise. Convolutional Neural Networks (CNN), which are a type of deep learning (DL) approach, have shown successful results in computer vision applications when combined with transfer learning. In this study, we utilized CNN based models to classify regional houses from Anatolia and Balkans based on their architectural styles with various pretrained models using transfer learning. We prepared a dataset using various sources and employed data augmentation and mixup techniques to solve the limited data availability problem for certain regional houses to improve the classification performance. Our study resulted in a classifier that successfully distinguishes 15 architectural classes from Anatolia and Balkans. We explain our predictions using grad-cam methodology. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Science and Business Media Deutschland GmbH | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) -- Workshops hosted by the 22nd International Conference on Image Analysis and Processing, ICIAP 2023 -- 11 September 2023 through 15 September 2023 -- Udine -- 306929 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | architectural classification | en_US |
dc.subject | cnn | en_US |
dc.subject | convnext | en_US |
dc.subject | grad-cam | en_US |
dc.subject | inception | en_US |
dc.subject | resnet | en_US |
dc.subject | transfer learning | en_US |
dc.title | Classification of Turkish and Balkan House Architectures Using Transfer Learning and Deep Learning | en_US |
dc.type | Conference Object | en_US |
dc.department | Izmir Institute of Technology | en_US |
dc.identifier.volume | 14366 | en_US |
dc.identifier.startpage | 398 | en_US |
dc.identifier.endpage | 408 | en_US |
dc.identifier.wos | WOS:001206148400034 | - |
dc.identifier.scopus | 2-s2.0-85184088628 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1007/978-3-031-51026-7_34 | - |
dc.authorscopusid | 58612439800 | - |
dc.authorscopusid | 58864918500 | - |
dc.authorscopusid | 58864760100 | - |
dc.authorscopusid | 56743322000 | - |
dc.authorscopusid | 6507164359 | - |
dc.authorscopusid | 35387836500 | - |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.