Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14312
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYönder,V.M.-
dc.contributor.authorİpek,E.-
dc.contributor.authorÇetin,T.-
dc.contributor.authorÇavka,H.B.-
dc.contributor.authorApaydın,M.S.-
dc.contributor.authorDoğan,F.-
dc.date.accessioned2024-03-03T16:41:31Z-
dc.date.available2024-03-03T16:41:31Z-
dc.date.issued2024-
dc.identifier.isbn978-303151025-0-
dc.identifier.issn3029-743-
dc.identifier.urihttps://doi.org/10.1007/978-3-031-51026-7_34-
dc.identifier.urihttps://hdl.handle.net/11147/14312-
dc.description.abstractClassifying architectural structures is an important and challenging task that requires expertise. Convolutional Neural Networks (CNN), which are a type of deep learning (DL) approach, have shown successful results in computer vision applications when combined with transfer learning. In this study, we utilized CNN based models to classify regional houses from Anatolia and Balkans based on their architectural styles with various pretrained models using transfer learning. We prepared a dataset using various sources and employed data augmentation and mixup techniques to solve the limited data availability problem for certain regional houses to improve the classification performance. Our study resulted in a classifier that successfully distinguishes 15 architectural classes from Anatolia and Balkans. We explain our predictions using grad-cam methodology. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) -- Workshops hosted by the 22nd International Conference on Image Analysis and Processing, ICIAP 2023 -- 11 September 2023 through 15 September 2023 -- Udine -- 306929en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectarchitectural classificationen_US
dc.subjectcnnen_US
dc.subjectconvnexten_US
dc.subjectgrad-camen_US
dc.subjectinceptionen_US
dc.subjectresneten_US
dc.subjecttransfer learningen_US
dc.titleClassification of Turkish and Balkan House Architectures Using Transfer Learning and Deep Learningen_US
dc.typeConference Objecten_US
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.volume14366en_US
dc.identifier.startpage398en_US
dc.identifier.endpage408en_US
dc.identifier.wosWOS:001206148400034-
dc.identifier.scopus2-s2.0-85184088628-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/978-3-031-51026-7_34-
dc.authorscopusid58612439800-
dc.authorscopusid58864918500-
dc.authorscopusid58864760100-
dc.authorscopusid56743322000-
dc.authorscopusid6507164359-
dc.authorscopusid35387836500-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

122
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.