Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14270
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞahan, Gökhan-
dc.contributor.authorÖzdemir, Durmuş-
dc.date.accessioned2024-01-30T09:24:48Z-
dc.date.available2024-01-30T09:24:48Z-
dc.date.issued2024-
dc.identifier.issn0947-3580-
dc.identifier.urihttps://doi.org/10.1016/j.ejcon.2023.100945-
dc.identifier.urihttps://hdl.handle.net/11147/14270-
dc.description.abstractIn this work, we study uniform, uniform asymptotic, and input-to-state stability conditions for nonlinear time-varying systems. We introduce an easily verifiable condition for uniform attractivity by utilizing an indefinite sign upper bound for the derivative of the Lyapunov function. With this bounding structure, we propose novel conditions that enable us to test uniform stability, uniform asymptotic stability, and ISS, easily. As a result, the constraints on the coefficients of the bound that identify uniformity for stability and attractivity, and many of the available conditions have been relaxed. The results are also used for the perturbation problem of uniformly stable and uniformly asymptotically stable linear time-varying systems. Consequently, we demonstrate that uniform asymptotic stability of nonlinear time-varying systems can be robust for perturbations, but with special time-varying coefficients. © 2024 European Control Associationen_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK: 119F281, 3501en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relationStability Analysis With The Relaxed Conditions of Lyapunov Method-
dc.relation.ispartofEuropean Journal of Controlen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectInput-to-state stabilityen_US
dc.subjectLyapunov functionen_US
dc.subjectNonlinear time-varying systemsen_US
dc.subjectUniform asymptotic stabilityen_US
dc.subjectUniform stabilityen_US
dc.subjectAsymptotic stabilityen_US
dc.titleUniform asymptotic and input to state stability by indefinite Lyapunov functionsen_US
dc.typeArticleen_US
dc.authorid0000-0002-2371-6648-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.scopus2-s2.0-85182648957en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.ejcon.2023.100945-
dc.relation.grantno119F281-
dc.authorscopusid35792571200-
dc.authorscopusid57836288800-
item.grantfulltextembargo_20260101-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept04.02. Department of Mathematics-
crisitem.author.dept04.01. Department of Chemistry-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
1-s2.0-S0947358023001735-main.pdf
  Until 2026-01-01
695.05 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

60
checked on May 6, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.