Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14254
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAghazadeh, Nasser-
dc.contributor.authorAbbasi, Mandana-
dc.contributor.authorNoras, Parisa-
dc.date.accessioned2024-01-30T09:24:43Z-
dc.date.available2024-01-30T09:24:43Z-
dc.date.issued2023-
dc.identifier.issn1863-1703-
dc.identifier.issn1863-1711-
dc.identifier.urihttps://doi.org/10.1007/s11760-023-02940-1-
dc.identifier.urihttps://hdl.handle.net/11147/14254-
dc.description.abstractDue to the effect of agents such as ambiance, transition channel, and other agents, images are polluted by noise during collection, transition, and compaction, leading to decrease image quality. Noise can decrease the accuracy of the next stages of image processing systems. Therefore, one of the vital stages in the novel processing systems is denoising. This article offers a novel image denoising approach using bendlets. Other multi-scale transformations (such as wavelets, curvelets, and shearlets) cannot recognize properties such as location, direction, and curvature of discontinuities well in piecewise stable images. To solve this problem, bendlets are suggested in this article. Bendlets differ from other multi-scale transformations in that an additional bending parameter is utilized for recognizing the curvature of discontinuities. Bendlets need a fewer number of coefficients to identify curvatures than other multi-scale transformations. Furthermore, they help to make the edges more obvious. The suggested approach is utilized on the UBIRIS.V2 database. It earns better accuracy and stability than other multi-scale transformations.en_US
dc.language.isoenen_US
dc.publisherSpringer London Ltden_US
dc.relation.ispartofSignal Image and Video Processingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBendletsen_US
dc.subjectImage denoisingen_US
dc.subjectIris detectionen_US
dc.subjectIris segmentationen_US
dc.subjectImageen_US
dc.subjectLocalizationen_US
dc.subjectRecognitionen_US
dc.titleAn iris segmentation scheme based on bendletsen_US
dc.typeArticleen_US
dc.typeArticle; Early Accessen_US
dc.institutionauthor-
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.wosWOS:001131891800001en_US
dc.identifier.scopus2-s2.0-85180901794en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s11760-023-02940-1-
dc.authorscopusid8937839000-
dc.authorscopusid58784638000-
dc.authorscopusid57203387039-
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairetypeArticle; Early Access-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

178
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.