Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/14254
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aghazadeh, Nasser | - |
dc.contributor.author | Abbasi, Mandana | - |
dc.contributor.author | Noras, Parisa | - |
dc.date.accessioned | 2024-01-30T09:24:43Z | - |
dc.date.available | 2024-01-30T09:24:43Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 1863-1703 | - |
dc.identifier.issn | 1863-1711 | - |
dc.identifier.uri | https://doi.org/10.1007/s11760-023-02940-1 | - |
dc.identifier.uri | https://hdl.handle.net/11147/14254 | - |
dc.description.abstract | Due to the effect of agents such as ambiance, transition channel, and other agents, images are polluted by noise during collection, transition, and compaction, leading to decrease image quality. Noise can decrease the accuracy of the next stages of image processing systems. Therefore, one of the vital stages in the novel processing systems is denoising. This article offers a novel image denoising approach using bendlets. Other multi-scale transformations (such as wavelets, curvelets, and shearlets) cannot recognize properties such as location, direction, and curvature of discontinuities well in piecewise stable images. To solve this problem, bendlets are suggested in this article. Bendlets differ from other multi-scale transformations in that an additional bending parameter is utilized for recognizing the curvature of discontinuities. Bendlets need a fewer number of coefficients to identify curvatures than other multi-scale transformations. Furthermore, they help to make the edges more obvious. The suggested approach is utilized on the UBIRIS.V2 database. It earns better accuracy and stability than other multi-scale transformations. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer London Ltd | en_US |
dc.relation.ispartof | Signal Image and Video Processing | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Bendlets | en_US |
dc.subject | Image denoising | en_US |
dc.subject | Iris detection | en_US |
dc.subject | Iris segmentation | en_US |
dc.subject | Image | en_US |
dc.subject | Localization | en_US |
dc.subject | Recognition | en_US |
dc.title | An iris segmentation scheme based on bendlets | en_US |
dc.type | Article | en_US |
dc.type | Article; Early Access | en_US |
dc.institutionauthor | … | - |
dc.department | İzmir Institute of Technology | en_US |
dc.identifier.wos | WOS:001131891800001 | en_US |
dc.identifier.scopus | 2-s2.0-85180901794 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1007/s11760-023-02940-1 | - |
dc.authorscopusid | 8937839000 | - |
dc.authorscopusid | 58784638000 | - |
dc.authorscopusid | 57203387039 | - |
dc.identifier.wosquality | Q3 | - |
dc.identifier.scopusquality | Q2 | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.openairetype | Article; Early Access | - |
crisitem.author.dept | 04.02. Department of Mathematics | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.