Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14154
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNalcakan, Y.-
dc.contributor.authorBastanlar, Y.-
dc.date.accessioned2024-01-06T07:21:35Z-
dc.date.available2024-01-06T07:21:35Z-
dc.date.issued2023-
dc.identifier.isbn9798350306590-
dc.identifier.urihttps://doi.org/10.1109/ASYU58738.2023.10296634-
dc.identifier.urihttps://hdl.handle.net/11147/14154-
dc.description2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023 -- 11 October 2023 through 13 October 2023 -- 194153en_US
dc.description.abstractPrediction of lane-changing maneuvers of surrounding vehicles is important for autonomous vehicles to understand the scene properly. This research proposes a vision-based technique that only requires a single in-car RGB camera. The surrounding vehicles' maneuvers are classified as right/left lane-change or no lane change conforming to most lane change detection studies in the literature. The usual practice in previous studies is feeding individual video frames into CNN to extract features and afterward using an LSTM to classify the sequence of features. Differently, in our study, we exploit the power of ensembling the prediction results of two methods. The first one uses a small feature vector containing the image coordinates of the target vehicle and classifies it with an LSTM. The second method works with a simplified scene representation video (only the target vehicle and ego-lane highlighted) and it is based on a self-supervised contrastive video representation learning scheme. Since maneuver labeling is not required in the self-supervised learning step this enables the use of a relatively large dataset. After the self-supervised training, the model is fine-tuned with a labeled dataset. Our experimental study on a well-known lane change detection dataset reveals that both of the mentioned methods by themselves achieve state-of-the-art results and ensembling them increases the classification accuracy even more. © 2023 IEEE.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK: 118C079en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectautonomous vehicleen_US
dc.subjectcontrastive representation learningen_US
dc.subjectdriver assistance systemsen_US
dc.subjectlane change detectionen_US
dc.subjectAutomobile driversen_US
dc.subjectChange detectionen_US
dc.subjectClassification (of information)en_US
dc.subjectLarge dataseten_US
dc.subjectLong short-term memoryen_US
dc.subjectAutonomous Vehiclesen_US
dc.subjectChange detectionen_US
dc.subjectContrastive representation learningen_US
dc.subjectDriver-assistance systemsen_US
dc.subjectImage-baseden_US
dc.subjectLane changeen_US
dc.subjectLane change detectionen_US
dc.subjectLane changing maneuveren_US
dc.subjectLearning modelsen_US
dc.subjectTarget vehiclesen_US
dc.subjectAutonomous vehiclesen_US
dc.titleLane Change Detection with an Ensemble of Image-based and Video-based Deep Learning Modelsen_US
dc.typeConference Objecten_US
dc.institutionauthor-
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.scopus2-s2.0-85178269588en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/ASYU58738.2023.10296634-
dc.authorscopusid57205611298-
dc.authorscopusid15833922000-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

86
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.