Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14116
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖztarhan, Gökhan-
dc.contributor.authorKul, E. Bulut-
dc.contributor.authorOkçu, Emre-
dc.contributor.authorGuclu, A. D.-
dc.date.accessioned2024-01-06T07:21:23Z-
dc.date.available2024-01-06T07:21:23Z-
dc.date.issued2023-
dc.identifier.issn2469-9950-
dc.identifier.issn2469-9969-
dc.identifier.urihttps://doi.org/10.1103/PhysRevB.108.L161114-
dc.identifier.urihttps://hdl.handle.net/11147/14116-
dc.description.abstractSemiconductor artificial graphene nanostructures where the Hubbard model parameter U/t can be of the order of 100, provide a highly controllable platform to study strongly correlated quantum many-particle phases. We use accurate variational and diffusion Monte Carlo methods to demonstrate a transition from antiferromagnetic to metallic phases for an experimentally accessible lattice constant a = 50 nm in terms of lattice site radius rho, for finite-sized artificial honeycomb structures nanopatterned on GaAs quantum wells containing up to 114 electrons. By analyzing spin-spin correlation functions for hexagonal flakes with armchair edges and triangular flakes with zigzag edges, we show that edge type, geometry, and charge nonuniformity affect the steepness and the crossover rho value of the phase transition. For triangular structures, the metal-insulator transition is accompanied with a smoother edge polarization transition.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [119F119]en_US
dc.description.sponsorshipWe thank C. J. Umrigar for his endless support for the CHAMP [45] program with which our QMC simulations have been performed, and Pawel Hawrylak and Yasser Saleem for valuable conversations. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under the 1001 Grant Project No. 119F119. The numerical calculations reported in this study were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources) .en_US
dc.language.isoenen_US
dc.publisherAMER PHYSICAL SOCen_US
dc.relation.ispartofPhysical Review Ben_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTransitionen_US
dc.subjectGasen_US
dc.titleQuantum Monte Carlo study of semiconductor artificial graphene nanostructuresen_US
dc.typeArticleen_US
dc.authoridKul, E. Bulut/0000-0003-2392-4313-
dc.institutionauthor-
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume108en_US
dc.identifier.issue16en_US
dc.identifier.wosWOS:001097066900006en_US
dc.identifier.scopus2-s2.0-85177619758en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1103/PhysRevB.108.L161114-
dc.authorscopusid57955376900-
dc.authorscopusid57219023244-
dc.authorscopusid57955602000-
dc.authorscopusid6603678156-
item.grantfulltextnone-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept04.05. Department of Pyhsics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

32
checked on May 6, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.