Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/14058
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Geçgel Çetin, Selen | - |
dc.contributor.author | Özbek, Berna | - |
dc.contributor.author | Karabulut Kurt, Güneş | - |
dc.date.accessioned | 2023-11-11T08:57:57Z | - |
dc.date.available | 2023-11-11T08:57:57Z | - |
dc.date.issued | 2023 | - |
dc.identifier.isbn | 9798350311143 | - |
dc.identifier.issn | 1550-2252 | - |
dc.identifier.uri | https://doi.org/10.1109/VTC2023-Spring57618.2023.10201087 | - |
dc.identifier.uri | https://hdl.handle.net/11147/14058 | - |
dc.description | 97th IEEE Vehicular Technology Conference, VTC 2023-Spring -- 20 June 2023 through 23 June 2023 | en_US |
dc.description.abstract | Space has been reforming and this evolution brings new threats that, together with technological developments and malicious intent, can pose a major challenge. Space domain awareness (SDA), a new conceptual idea, has come to the forefront. It aims sensing, detection, identification and countermeasures by providing autonomy, intelligence and flexibility against potential threats in space. In this study, we first present an insightful and clear view of the new space. Secondly, we propose an integrated SDA and communication (ISDAC) system for attacker detection. We assume that the attacker has advanced communication capabilities to vary attack scenarios, such as random attacks on some receiver antennas. To track random patterns and meet SDA requirements, a lightweight convolutional neural network architecture is developed. The proposed ISDAC system shows superior and robust performance under 12 different super-attacker configurations with a detection accuracy of over 97.8%. © 2023 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | IEEE Vehicular Technology Conference | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | ISDAC | en_US |
dc.subject | Convolutional neural networks | en_US |
dc.subject | Jamming | en_US |
dc.subject | Receiving antennas | en_US |
dc.subject | Attacks scenarios | en_US |
dc.subject | Communications systems | en_US |
dc.title | Integrated space domain awareness and communication system | en_US |
dc.type | Conference Object | en_US |
dc.authorid | 0000-0003-4359-7874 | - |
dc.institutionauthor | Özbek, Berna | - |
dc.department | İzmir Institute of Technology. Electrical and Electronics Engineering | en_US |
dc.identifier.volume | 2023-June | en_US |
dc.identifier.wos | WOS:001054797202156 | en_US |
dc.identifier.scopus | 2-s2.0-85169815466 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | tr |
dc.identifier.doi | 10.1109/VTC2023-Spring57618.2023.10201087 | - |
dc.authorscopusid | 57581395400 | - |
dc.authorscopusid | 15728552000 | - |
dc.authorscopusid | 57219783285 | - |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
crisitem.author.dept | 03.05. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Integrated_Space.pdf | 1.96 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
1
checked on Nov 15, 2024
Page view(s)
118
checked on Nov 18, 2024
Download(s)
22
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.