Please use this identifier to cite or link to this item:
Title: Photonic crystal textiles for heat insulation
Authors: Çetin, Zebih
Tunçtürk, Yiğit
Sözüer, Hüseyin Sami
Keywords: Crystal structure
Energy conservation
Energy utilization
Photonic crystals
Potential energy
Publisher: American Institute of Physics
Abstract: In this work, we have studied transmission properties of a photonic crystal-like structure that can be woven into fabrics. An interesting possibility emerges when considering the potential energy savings through suppression of radiation. It is a well-established fact that every object at a finite temperature inherently emits electromagnetic waves. Within the specific context of the human body, radiation takes on a crucial role as a fundamental mechanism governing heat dissipation. Thus, exploring ways to manage or mitigate this radiation could offer innovative approaches to optimize energy consumption and enhance heat regulation. It is well known that a photonic crystal can block electromagnetic energy with a specific frequency that is falling into a photonic bandgap. By using the numerical method called a finite-difference time domain, we have shown that this property of a periodic structure can be used to make textiles to save energy that is used to heat a human body environment. Numerical calculations have shown that by using the proposed photonic crystal structure, 53 % of electromagnetic energy is reflected. Although we mainly focused on textiles, it is worth highlighting that the same fundamental principle can be extended to diverse fields; for example, this structure can be integrated with construction materials and effectively function as a radiation heat insulator. © 2023 Author(s).
ISSN: 0021-8979
Appears in Collections:Physics / Fizik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
123108_1_5.0157736.pdf3.25 MBAdobe PDFView/Open
Show full item record

CORE Recommender

Page view(s)

checked on Jun 17, 2024


checked on Jun 17, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.