Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/14020
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Huang, Jianxin | - |
dc.contributor.author | Makhatova, Ardak | - |
dc.contributor.author | Kogbara, Reginald | - |
dc.contributor.author | Masad, Eyad | - |
dc.contributor.author | Sukhishvili, Svetlana | - |
dc.contributor.author | Little, Dallas | - |
dc.date.accessioned | 2023-11-11T08:56:16Z | - |
dc.date.available | 2023-11-11T08:56:16Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 2214-3912 | - |
dc.identifier.uri | https://doi.org/10.1016/j.trgeo.2023.101124 | - |
dc.identifier.uri | https://hdl.handle.net/11147/14020 | - |
dc.description.abstract | Two polyelectrolytes of opposite charges, sodium polystyrene sulfonate (PSS) and polydiallyldimethylammonium chloride (PDADMAC), were investigated to stabilize palygorskite clay at varying dosages of 0.2, 0.8, 1.6, and 3.2 % by the dry weight of the soil. Both PSS and PDADMAC improved the unconfined compressive strength of the palygorskite clay. PSS was effective at all the polymer contents studied after 7 days of dry curing and the strength increased with the dosages of PSS added, ranging from 2 MPa (0.2 % PSS) to 3.1 MPa (3.2 % PSS), compared with 1.5 MPa of the untreated soil. PDADMAC, on the other hand, showed comparable strength improvements as PSS did at the high polymer contents of 1.6 and 3.2 % but did not work at 0.2 and 0.8 % dosages. Under wet curing at 100 % relative humidity, PSS improved the strength of the clay by 40 % (620 kPa at 0.2 % PSS) to 77 % (764 kPa at 1.6 % PSS) compared to the untreated clay (440 kPa). PDADMAC exhibited less improvement than PSS under wet conditions but still worked at dosages of 0.8 and 1.6 %. Besides strength, the resilient modulus and fracture toughness of the treated specimens increased by approximately 10 % and 66 %, respectively, when treated with 1.6 % PSS, which was the optimum content based on the strength results. PDADMAC-treated palygorskite, however, exhibited cracking during curing for both tests, showing potential drying crack issues. The adsorption of PSS and PDADMAC on palygorskite clay were also measured using ultraviolet–visible spectroscopy, and binding between these polymers and palygorskite has been confirmed. The measured adsorption capacities of PSS and PDADMAC were comparable (2.9 and 2.7 mg/g, respectively), while the PSS was somewhat more efficient in improving soil mechanical properties. © 2023 Elsevier Ltd | en_US |
dc.description.sponsorship | This publication was made possible by a National Priorities Research Program grant (NPRP13S–0124–200160: Innovative Techniques for Stabilization of Qatari Soils and Petroleum Drill Cuttings Using Organic Polymers) from the Qatar National Research Fund, a member of the Qatar Foundation. The findings herein reflect the work of the authors and are solely the responsibility of the authors. The authors would like to thank Dr. Anand Puppala and his research team at Texas A&M University for allowing the authors to use his laboratory for the resilient modulus test and the kind help they provided during the tests. The assistance of Dr. Yong-Rak Kim and his team at Texas A&M University in conducting the semicircular bending tests is greatly appreciated. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Transportation Geotechnics | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Fracture toughness | en_US |
dc.subject | Palygorskite | en_US |
dc.subject | Polyelectrolyte | en_US |
dc.subject | Resilient modulus | en_US |
dc.subject | Unconfined compressive strength | en_US |
dc.title | Mechanical properties of palygorskite clay stabilized with polyelectrolytes | en_US |
dc.type | Article | en_US |
dc.institutionauthor | Kogbara, Reginald | - |
dc.department | İzmir Institute of Technology. Environmental Engineering | en_US |
dc.identifier.volume | 43 | en_US |
dc.identifier.wos | WOS:001091804000001 | en_US |
dc.identifier.scopus | 2-s2.0-85173432186 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | tr |
dc.identifier.doi | 10.1016/j.trgeo.2023.101124 | - |
dc.authorscopusid | 57249133500 | - |
dc.authorscopusid | 57207858807 | - |
dc.authorscopusid | 14070237400 | - |
dc.authorscopusid | 7003647509 | - |
dc.authorscopusid | 6603714011 | - |
dc.authorscopusid | 7202966398 | - |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q1 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | embargo_20260101 | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 03.07. Department of Environmental Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1-s2.0-S2214391223001976-main.pdf Until 2026-01-01 | 7.17 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
1
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
1
checked on Nov 9, 2024
Page view(s)
132
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.