Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14019
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGül, Enestr
dc.contributor.authorSafari, Mir Jafar Sadegh-
dc.contributor.authorDursun, Ömer Faruktr
dc.contributor.authorTayfur, Gökmentr
dc.date.accessioned2023-11-11T08:56:16Z-
dc.date.available2023-11-11T08:56:16Z-
dc.date.issued2023-
dc.identifier.issn1001-6279-
dc.identifier.urihttps://doi.org/10.1016/j.ijsrc.2023.07.003-
dc.identifier.urihttps://hdl.handle.net/11147/14019-
dc.description.abstractUncontrolled sediment deposition in drainage and sewer systems raises unexpected maintenance expenditures. To this end, implementation of an accurate model relying on effective parameters involved is a reliable benchmark. In this study, three machine learning techniques, namely extreme learning machine (ELM), multilayer perceptron neural network (MLPNN), and M5P model tree (M5PMT); and three optimization approaches of Runge Kutta (RUN), genetic algorithm (GA), and particle swarm optimization (PSO) are applied for modeling. The optimization and ensemble hybridization approaches are applied in the modeling procedure. For the case of hybrid optimized models, the ELM and MLPNN models are hybridized with RUN, GA, and PSO algorithms to develop six hybrid models of ELM-RUN, ELM-GA, ELM-PSO, MLPNN-RUN, MLPNN-GA, and MLPNN-PSO. Ensemble hybrid models are developed through coupling the ELM and MLPNN models with the M5PMT algorithm. The data pre-processing approach is applied to find the best randomness characteristic of the utilized data. Results illustrate that the RUN-based hybrid models outperform the GA- and PSO-based counterparts. Although the MLPNN-RUN and MLPNN-M5PMT hybrid models generate better results than their alternatives, MLPNN-M5PMT slightly outperforms MLPNN-RUN model with a coefficient of determination of 0.84 and a root mean square error of 0.88. The current study shows the superiority of the ensemble-based approach to the optimization techniques. Further investigation is needed by considering alternative optimization techniques to enhance sediment transport modeling. © 2023 International Research and Training Centre on Erosion and Sedimentation/the World Association for Sedimentation and Erosion Researchen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofInternational Journal of Sediment Researchen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEnsemble learningen_US
dc.subjectHybrid modelen_US
dc.subjectMachine learningen_US
dc.subjectOpen channelsen_US
dc.subjectSediment transporten_US
dc.subjectSewer pipesen_US
dc.titleEnsemble and optimized hybrid algorithms through Runge Kutta optimizer for sewer sediment transport modeling using a data pre-processing approachen_US
dc.typeArticleen_US
dc.authorid0000-0001-9712-4031-
dc.institutionauthorTayfur, Gökmentr
dc.departmentİzmir Institute of Technology. Civil Engineeringen_US
dc.identifier.volume38en_US
dc.identifier.issue6en_US
dc.identifier.startpage847en_US
dc.identifier.endpage858en_US
dc.identifier.wosWOS:001101270000001en_US
dc.identifier.scopus2-s2.0-85170540978en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıtr
dc.identifier.doi10.1016/j.ijsrc.2023.07.003-
dc.authorscopusid57221462233-
dc.authorscopusid56047228600-
dc.authorscopusid56689904500-
dc.authorscopusid6701638605-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextembargo_20260101-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.03. Department of Civil Engineering-
Appears in Collections:Civil Engineering / İnşaat Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1-s2.0-S1001627923000410-main.pdf
  Until 2026-01-01
2.56 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 15, 2024

Page view(s)

224
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.