Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13990
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDizman, E. Aybars-
dc.contributor.authorÖzdemir, Izzet-
dc.date.accessioned2023-11-11T08:55:00Z-
dc.date.available2023-11-11T08:55:00Z-
dc.date.issued2023-
dc.identifier.issn0168-874X-
dc.identifier.issn1872-6925-
dc.identifier.urihttps://doi.org/10.1016/j.finel.2023.104019-
dc.identifier.urihttps://hdl.handle.net/11147/13990-
dc.description.abstractIn very thin ply laminates, delamination failure initiation occurs at much higher stress levels as compared to conventional ply laminates. This results in significant plastic deformation in the matrix accompanied by large fiber rotations. A closer look reveals that microstructure of fiber reinforced composites at large strains do not rotate with the plastic spin induced by the total deformation gradient and therefore inelasticity of such materials requires dedicated constitutive models. This paper focuses on inelastic response of such composites by using a recently proposed crystal plasticity based modeling framework and extents it by a non-local continuum damage mechanics formulation. As opposed to existing works related to composites, adapted crystal plasticity model is formulated and implemented in an implicit manner. To address the initiation and evolution of damage observed at large strains, localizing implicit gradient damage (LIGD) framework is used to degrade the slip resistance and hardening mechanisms on longitudinal and transverse slip systems by means of two separate damage variables. A user element (UEL) subroutine encapsulating all the components of the model is developed and integrated within the commercial finite element solver Abaqus. Capabilities of the model are assessed at material point, ply, and component levels by comparisons with analytical solutions and selected experimental results from the literature.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofFinite Elements in Analysis and Designen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFiber reinforced compositesen_US
dc.subjectCrystal plasticityen_US
dc.subjectNon-local damage mechanicsen_US
dc.subjectLocalizing implicit gradient damageen_US
dc.subjectFinite elementsen_US
dc.titleModeling plasticity and damage in fiber reinforced composites by a crystal plasticity based approachen_US
dc.typeArticleen_US
dc.institutionauthorÖzdemir, Izzet-
dc.departmentİzmir Institute of Technology. Civil Engineeringen_US
dc.identifier.volume227en_US
dc.identifier.wosWOS:001071015600001en_US
dc.identifier.scopus2-s2.0-85170292383en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıtr
dc.identifier.doi10.1016/j.finel.2023.104019-
dc.authorscopusid57446475800-
dc.authorscopusid56976669000-
dc.identifier.scopusqualityQ1-
item.grantfulltextembargo_20250101-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept03.03. Department of Civil Engineering-
Appears in Collections:Civil Engineering / İnşaat Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1-s2.0-S0168874X23001129-main.pdf
  Until 2025-01-01
2.69 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

42
checked on May 6, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.