Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13967
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOnay, Fatihtr
dc.contributor.authorKaraçalı, Bilge-
dc.date.accessioned2023-11-11T08:54:55Z-
dc.date.available2023-11-11T08:54:55Z-
dc.date.issued2023-
dc.identifier.isbn979-8-3503-4355-7-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://doi.org/10.1109/SIU59756.2023.10223916-
dc.identifier.urihttps://hdl.handle.net/11147/13967-
dc.description31st IEEE Conference on Signal Processing and Communications Applications (SIU) -- JUL 05-08, 2023 -- Istanbul Tech Univ, Ayazaga Campus, Istanbul, TURKEYen_US
dc.description.abstractParkinson's disease is a neurodegenerative disorder caused by dopamine deficiency in the basal ganglia, resulting in cognitive and motor impairments. In this study, accelerometer signals were used to estimate the delay time between the command to start pedaling and the actual movement onset in three groups: healthy individuals (n=13), Parkinson's disease patients (n=13), and patients with freezing of gait symptoms (n=13). Features were extracted from the delay time distributions for each participant and subjected to a triple classification. Linear support vector machine achieved a classification accuracy of 69.2% for all participants. Notably, the average time to start pedaling was found to be significantly different among the three groups, and accelerometer-based timing analysis could be used as a diagnostic tool to assist clinical tests.en_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2023 31st Signal Processing and Communications Applications Conference, Siuen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPedalingen_US
dc.subjectParkinson diseaseen_US
dc.subjectFoGen_US
dc.subjectAccelerometersen_US
dc.subjectClassificationen_US
dc.subjectFilteringen_US
dc.subjectDelay timeen_US
dc.titleParkinson hastalığı sınıflandırmasına yönelik ivmeölçer tabanlı zamanlama analizitr
dc.title.alternativeAccelerometer-based timing analysis for Parkinson's disease classificationen_US
dc.typeConference Objecten_US
dc.authorid0000-0003-1396-2885-
dc.authorid0000-0002-7765-6329-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.wosWOS:001062571000149en_US
dc.identifier.scopus2-s2.0-85173487185en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıtr
dc.identifier.doi10.1109/SIU59756.2023.10223916-
dc.authorscopusid56198946500-
dc.authorscopusid6603084273-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1tr-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Accelerometer-Based.pdf1.11 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 15, 2024

Page view(s)

180
checked on Nov 18, 2024

Download(s)

114
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.