Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13827
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuntalp, Mehmet-
dc.contributor.authorDuzyel, Okan-
dc.date.accessioned2023-10-03T07:16:29Z-
dc.date.available2023-10-03T07:16:29Z-
dc.date.issued2024-
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2023.121199-
dc.description.abstractData augmentation is a commonly used approach for addressing the issue of limited data availability in machine learning. There are various methods available, including classical and modern techniques. However, when applying modern data augmentation methods, such as Generative Adversarial Neural Networks (GANs), to a class specific data, the resulting data can exhibit structural discrepancies. This study explores a different use of GANs as a data augmentation method that solves this problem using the electrocardiogram (ECG) signals in the MITBIH arrhythmia dataset as the example. We begin by examining the cluster structure of a specific class using tDistributed Stochastic Neighbor (t-SNE) method. Based on this cluster structure, we propose a new method for applying GANs to augment data for that class. We assess the effect of our method in a classification task using 1-D Convolutional Neural Network (CNN), Support Vector Machine (SVM), One vs one classifier (Ovo), K-Nearest Neighbors (KNN), and Random Forest as the classifiers. The results demonstrate that our proposed method could lead to better classification performance if a specific class has distinct clusters when compared to normal use of GANs.en_US
dc.language.isoenen_US
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.ispartofExpert Systems with Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectECGen_US
dc.subjectGenerative adversarial neural networksen_US
dc.subjectData augmentationen_US
dc.subjectt-SNEen_US
dc.titleA new method for GAN-based data augmentation for classes with distinct clustersen_US
dc.typeArticleen_US
dc.authorid0000-0002-9123-3146-
dc.institutionauthorDüzyel, Okan-
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.volume235en_US
dc.identifier.wosWOS:001066101400001en_US
dc.identifier.wosWOS:001066101400001-
dc.identifier.scopus2-s2.0-85168424458en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.eswa.2023.121199-
dc.authorscopusid56247263600-
dc.authorscopusid58135677500-
dc.authorwosidkuntalp, mehmet/W-4067-2017-
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
dc.description.woscitationindexScience Citation Index Expanded-
item.fulltextWith Fulltext-
item.grantfulltextembargo_20260101-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1-s2.0-S0957417423017013-main.pdf
  Until 2026-01-01
5.41 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 16, 2024

Page view(s)

176
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.