Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13785
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDüzyel, Okan-
dc.contributor.authorÇatal, Mehmet Sergen-
dc.contributor.authorKayan, Ceyhun Efe-
dc.contributor.authorSevinç, Arda-
dc.contributor.authorGümüş, Abdurrahman-
dc.date.accessioned2023-10-03T07:15:34Z-
dc.date.available2023-10-03T07:15:34Z-
dc.date.issued2023-
dc.identifier.issn1863-1703-
dc.identifier.issn1863-1711-
dc.identifier.urihttps://doi.org/10.1007/s11760-023-02692-y-
dc.identifier.urihttps://hdl.handle.net/11147/13785-
dc.description.abstractBreast cancer is a major global health concern, and early and accurate diagnosis is crucial for effective treatment. Recent advancements in computer-assisted prediction models have facilitated diagnosis and prognosis using high-resolution histopathology images, which provide detailed information on cancerous tissue. However, these high-resolution images often require resizing, leading to potential data loss. In this study, we demonstrate the effect of a learnable adaptive resizer for breast cancer classification using the BreakHis dataset. Our approach incorporates the adaptive resizer with various convolutional neural network models, including VGG16, VGG19, MobileNetV2, InceptionResnetV2, DenseNet121, DenseNet201, and EfficientNetB0. Despite producing visually less appealing images, the learnable resizer effectively improves classification performance. DenseNet201, when jointly trained with the adaptive resizer, achieves the highest accuracy of 98.96% for input images of 448x448 resolution. Our experimental results demonstrate that the adaptive resizer performs better at a magnification factor of 40x compared to higher magnifications. While its effectiveness becomes less pronounced as image resolution increases to 100x, 200x, and 400x, the adaptive resizer still outperforms bilinear interpolation. In conclusion, this study highlights the potential of adaptive resizers in enhancing performance for medical image classification. By outperforming traditional image resizing methods, our work contributes to the advancement of deep neural networks in the field of breast cancer diagnostics.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofSignal Image and Video Processingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBreast canceren_US
dc.subjectHistopathology imagesen_US
dc.subjectComputer-assisted predictionen_US
dc.subjectDeep neural networksen_US
dc.subjectAdaptive resizeren_US
dc.titleAdaptive Resizer-Based Transfer Learning Framework for the Diagnosis of Breast Cancer Using Histopathology Imagesen_US
dc.typeArticleen_US
dc.authorid0000-0003-2993-5769-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.wosWOS:001052525300002en_US
dc.identifier.scopus2-s2.0-85168456964en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s11760-023-02692-y-
dc.authorscopusid58135677500-
dc.authorscopusid57350690900-
dc.authorscopusid57792931300-
dc.authorscopusid58287933300-
dc.authorscopusid35315599800-
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Adaptive-resizerbased.pdf3.18 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Dec 20, 2024

WEB OF SCIENCETM
Citations

2
checked on Oct 26, 2024

Page view(s)

204
checked on Dec 16, 2024

Download(s)

40
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.