Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13765
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAtaç, Enestr
dc.contributor.authorKaratay, Anıltr
dc.contributor.authorDinleyici, Mehmet Salihtr
dc.date.accessioned2023-10-03T07:15:28Z-
dc.date.available2023-10-03T07:15:28Z-
dc.date.issued2023-
dc.identifier.issn0957-0233-
dc.identifier.issn1361-6501-
dc.identifier.urihttps://doi.org/10.1088/1361-6501/aced19-
dc.identifier.urihttps://hdl.handle.net/11147/13765-
dc.description.abstractAccurate determination of the optical properties of ultra-thin dielectric films is an essential and challenging task in optical fiber sensor systems. However, nanoscale thickness identification of these films may be laborious due to insufficient and protracted classical curve matching algorithms. Therefore, this experimental study presents an application of a radial basis function neural network in phase diffraction-based optical characterization systems to determine the thickness of nanoscale polymer films. The non-stationary measurement data with environmental and detector noise were subjected to a detailed analysis. The outcomes of this investigation are benchmarked against the linear discriminant analysis method and further verified by means of scanning electron microscopy. The results show that the neural network has reached a remarkable accuracy of 98% and 82.5%, respectively, in tests with simulation and experimental data. In this way, rapid and precise thickness estimation may be realized within the tolerance range of 25 nm, offering a significant improvement over conventional measurement techniques.en_US
dc.language.isoenen_US
dc.publisherIOP Publishingen_US
dc.relation.ispartofMeasurement Science and Technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPhase diffractionen_US
dc.subjectNeural networksen_US
dc.subjectOptical fiber sensorsen_US
dc.subjectOptical characterizationen_US
dc.titleEnhancing thickness determination of nanoscale dielectric films in phase diffraction-based optical characterization systems with radial basis function neural networksen_US
dc.typeArticleen_US
dc.authorid0000-0002-4516-3028-
dc.authorid0000-0002-0694-610X-
dc.authorid0000-0003-2807-3968-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.volume34en_US
dc.identifier.issue12en_US
dc.identifier.wosWOS:001045220900001en_US
dc.identifier.scopus2-s2.0-85167874117en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıtr
dc.identifier.doi10.1088/1361-6501/aced19-
local.message.claim2023-10-18T09:44:09.895+0300*
local.message.claim|rp00047*
local.message.claim|submit_approve*
local.message.claim|dc_contributor_author*
local.message.claim|None*
dc.authorscopusid57218106507-
dc.authorscopusid57205629887-
dc.authorscopusid6602810237-
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept01. Izmir Institute of Technology-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Ataç_2023_Meas._Sci._Technol.pdf2.05 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

170
checked on Nov 18, 2024

Download(s)

66
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.