Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/13765
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ataç, Enes | tr |
dc.contributor.author | Karatay, Anıl | tr |
dc.contributor.author | Dinleyici, Mehmet Salih | tr |
dc.date.accessioned | 2023-10-03T07:15:28Z | - |
dc.date.available | 2023-10-03T07:15:28Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 0957-0233 | - |
dc.identifier.issn | 1361-6501 | - |
dc.identifier.uri | https://doi.org/10.1088/1361-6501/aced19 | - |
dc.identifier.uri | https://hdl.handle.net/11147/13765 | - |
dc.description.abstract | Accurate determination of the optical properties of ultra-thin dielectric films is an essential and challenging task in optical fiber sensor systems. However, nanoscale thickness identification of these films may be laborious due to insufficient and protracted classical curve matching algorithms. Therefore, this experimental study presents an application of a radial basis function neural network in phase diffraction-based optical characterization systems to determine the thickness of nanoscale polymer films. The non-stationary measurement data with environmental and detector noise were subjected to a detailed analysis. The outcomes of this investigation are benchmarked against the linear discriminant analysis method and further verified by means of scanning electron microscopy. The results show that the neural network has reached a remarkable accuracy of 98% and 82.5%, respectively, in tests with simulation and experimental data. In this way, rapid and precise thickness estimation may be realized within the tolerance range of 25 nm, offering a significant improvement over conventional measurement techniques. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IOP Publishing | en_US |
dc.relation.ispartof | Measurement Science and Technology | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Phase diffraction | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Optical fiber sensors | en_US |
dc.subject | Optical characterization | en_US |
dc.title | Enhancing thickness determination of nanoscale dielectric films in phase diffraction-based optical characterization systems with radial basis function neural networks | en_US |
dc.type | Article | en_US |
dc.authorid | 0000-0002-4516-3028 | - |
dc.authorid | 0000-0002-0694-610X | - |
dc.authorid | 0000-0003-2807-3968 | - |
dc.department | İzmir Institute of Technology. Electrical and Electronics Engineering | en_US |
dc.identifier.volume | 34 | en_US |
dc.identifier.issue | 12 | en_US |
dc.identifier.wos | WOS:001045220900001 | en_US |
dc.identifier.scopus | 2-s2.0-85167874117 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | tr |
dc.identifier.doi | 10.1088/1361-6501/aced19 | - |
local.message.claim | 2023-10-18T09:44:09.895+0300 | * |
local.message.claim | |rp00047 | * |
local.message.claim | |submit_approve | * |
local.message.claim | |dc_contributor_author | * |
local.message.claim | |None | * |
dc.authorscopusid | 57218106507 | - |
dc.authorscopusid | 57205629887 | - |
dc.authorscopusid | 6602810237 | - |
dc.identifier.wosquality | Q3 | - |
dc.identifier.scopusquality | Q2 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 01. Izmir Institute of Technology | - |
crisitem.author.dept | 03.05. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Ataç_2023_Meas._Sci._Technol.pdf | 2.05 MB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
170
checked on Nov 18, 2024
Download(s)
66
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.