Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13711
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖksel Karakuş, Ceydatr
dc.date.accessioned2023-07-27T19:51:19Z-
dc.date.available2023-07-27T19:51:19Z-
dc.date.issued2022-
dc.identifier.issn2822-2385-
dc.identifier.urihttps://doi.org/10.21541/apjess.1135939-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1123122-
dc.identifier.urihttps://hdl.handle.net/11147/13711-
dc.description.abstractWe investigated the application of structure-activity relationship approaches to underpin structural properties that potentially control the genotoxic potential of 9 different metal oxide nanoparticles (CuO, ZnO, NiO, SiO2, TiO2, CeO2, Fe2O3, Fe3O4 and Co3O4). In particular, we compiled a pool of quantum-mechanical, experimental and periodic table-driven descriptors and explored their distinctive contribution to the measured activity (genotoxicity). We first employed a clustered heatmap and parallel coordinates plot for visual exploration of the clusters and outliers of the data and finding corresponding responsible physicochemical descriptors. We then investigated the strength (and direction) of the relationship among descriptors and between descriptors and genotoxicity using similarity metrics. By using orthogonal projections to latent structures (OPLS), we were able to quantify the relative contribution of each descriptor to the genotoxicity of metal oxide nanoparticles. Our results suggested that zeta potential, the ratio of core electrons to valence electrons, Fermi energy and electronegativity were significant predictors of genotoxicity. Such computer-assisted approaches hold considerable promise for maximizing the use of accumulated data in nanotoxicology, prioritizing nanoparticles for further testing and filling data gaps required for hazard assessment processes.en_US
dc.language.isoenen_US
dc.relation.ispartofAcademic Platform Journal of Engineering and Smart Systems (APJESS)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleModelling genotoxic effects of metal oxide nanoparticles using QSAR approachen_US
dc.typeArticleen_US
dc.departmentİzmir Institute of Technology. Bioengineeringen_US
dc.identifier.volume10en_US
dc.identifier.issue3en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıtr
dc.identifier.doi10.21541/apjess.1135939-
dc.identifier.trdizinid1123122en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextopen-
crisitem.author.dept03.01. Department of Bioengineering-
Appears in Collections:Bioengineering / Biyomühendislik
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
Files in This Item:
File SizeFormat 
Modelling Genotoxic.pdf3.08 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

200
checked on Dec 2, 2024

Download(s)

44
checked on Dec 2, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.