Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13659
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMousavi Moghaddam, Reza-
dc.contributor.authorAghazadeh, Nasser-
dc.date.accessioned2023-07-27T19:51:13Z-
dc.date.available2023-07-27T19:51:13Z-
dc.date.issued2023-
dc.identifier.issn1380-7501-
dc.identifier.urihttps://doi.org/10.1007/s11042-023-16040-2-
dc.identifier.urihttps://hdl.handle.net/11147/13659-
dc.descriptionArticle; Early Accessen_US
dc.description.abstractFor the last three years, the world has been facing an infectious disease that primarily affects the human breathing organ. The disease has caused many deaths worldwide so far and has imposed high economic costs on all countries. Therefore, attention to computer-aided detection/diagnosis (CAD) systems to help diagnose and treat diseases related to the human respiratory system should be given more attention so that countries’ health systems can treat patients in epidemics. Considering the importance of CAD systems, we proposed a two-step automatic algorithm. In the first step, we obtain the primary boundary of the lobes in CT lung scan images with the help of some conventional image processing tools. In the second stage, we obtained a more precise boundary of the lung lobes by correcting the unusual dimples and valleys (which are sometimes caused by the presence of juxtapleural nodules). This proposed method has low implementation time. Given that a precise boundary of the pulmonary lobes is essential in the more accurate diagnosis of lung-related diseases, an attempt has been made to ensure that the final segmentation of the lung parenchyma has an acceptable score in terms of evaluation criteria so that the proposed algorithm can be used in the diagnosis procedure. © 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofMultimedia Tools and Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChest CT sliceen_US
dc.subjectJuxtapleural nodulesen_US
dc.subjectLung parenchyma segmentationen_US
dc.subjectBiological organsen_US
dc.subjectImage segmentationen_US
dc.subjectDiagnose systemen_US
dc.titleLung parenchyma segmentation from CT images with a fully automatic methoden_US
dc.typeArticleen_US
dc.institutionauthorAghazadeh, Nasser-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.wosWOS:001023700800003en_US
dc.identifier.scopus2-s2.0-85163807302en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s11042-023-16040-2-
dc.authorscopusid58421171400-
dc.authorscopusid8937839000-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextembargo_20250101-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Lung-Parenchyma.pdf
  Until 2025-01-01
2.64 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 9, 2024

Page view(s)

208
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.