Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13623
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCam Çelik, Şermin-
dc.contributor.authorEyidoğan, Sadık-
dc.contributor.authorGöral, Haydar-
dc.contributor.authorSertbaş, Doğa Can-
dc.date.accessioned2023-07-27T19:50:01Z-
dc.date.available2023-07-27T19:50:01Z-
dc.date.issued2023-
dc.identifier.issn1793-0421-
dc.identifier.issn1793-7310-
dc.identifier.urihttps://doi.org/10.1142/S1793042123500926-
dc.identifier.urihttps://hdl.handle.net/11147/13623-
dc.description.abstractIn this paper, we study the classification of sequences containing arbitrarily long arithmetic progressions. First, we deal with the question how the polynomial map n(s) can be extended so that it contains arbitrarily long arithmetic progressions. Under some growth conditions, we construct sequences which contain arbitrarily long arithmetic progressions. Also, we give a uniform and explicit arithmetic progression rank bound for a large class of sequences. Consequently, a dichotomy result is deduced on the finiteness of the arithmetic progression rank of certain sequences. Therefore, in this paper, we see a way to determine the finiteness of the arithmetic progression rank of various sequences satisfying some growth conditions.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publishingen_US
dc.relation.ispartofInternational Journal of Number Theoryen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArithmetic progressionsen_US
dc.subjectAP-ranken_US
dc.subjectvan der Waerden's theoremen_US
dc.titleOn classification of sequences containing arbitrarily long arithmetic progressionsen_US
dc.typeArticleen_US
dc.institutionauthorGöral, Haydar-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.wosWOS:000985141800001en_US
dc.identifier.scopus2-s2.0-85169456491en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıtr
dc.identifier.doi10.1142/S1793042123500926-
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ3-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

168
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.