Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/13572
Title: | Dynamic development of geochemical reaction fronts during hydraulic stimulation of shale | Authors: | Noel, Vincent Druhan, Jennifer L. Gündoğar, Aslı Kovscek, Anthony R. Brown Jr, Gordon E. Bargar, John R. |
Keywords: | Geochemical reaction front Mineral dissolution Matrix alteration Reactive transport Hydraulic stimulation Unconventional shale |
Publisher: | Elsevier | Abstract: | Injection of acidic hydraulic fracture fluid (HFF) into shale formations for unconventional oil/gas production results in chemical reactions in the shale matrix that can alter fluid transport. Here, we report the results of set of experiments designed to evaluate the impact of calcite dissolution as a function of carbonate mineral content on matrix chemical reactivity and pore-space modification concomitant with imbibition. We tracked acidic HFF transport in four samples of Wolfcamp shale with calcite contents varying from 4% to 59% by monitoring the rate and spatial extent of bromide tracer transport using synchrotron-based X-ray fluorescence microprobe (XFM) imaging. Concurrently, we also carried out XFM imaging of the spatial distribution of Ca in the Wolfcamp shale cores (as a proxy of calcite distribution). Our approach thus yields a direct record of time-resolved selective ion transport resulting from the penetration of acidic HFF and the associated mineral transformations in the shale cores. We show that the variability in calcite content of Wolfcamp shale samples can directly affect the rate and spatial extent of imbibition. Although reaction of the acidic HFF with carbonates in shales enhances calcite dissolution and increases porosity, the spatial extent of calcite dissolution in the shale matrix is limited due to a rapid neutralization of pH. The relative abundance and spatial distribution of calcite control the chemical saturation state of the HFF progressing into the matrix. As a result, calcite has a major impact on the spatial extent and rate of matrix alteration and thus on HFF transport during subsurface reservoir stimulation. Consequently, increased calcite content in the shale matrix inhibits the spatial extent of the pore-volume increase and, by extension, the spatial extent and rate of imbibition. Our results thus show that the overall rates of calcite dissolution approach the rates of acidic HFF transport (i. e., Damko spacing diaeresis hler number similar to 1), which could contribute to the efficiency of subsurface reservoir stimulation. A better understanding of HFF-calcite reaction rates is crucial for improving the prediction and optimization of fluid transport across HFF-shale interfaces during hydraulic fracturing. | URI: | https://doi.org/10.1016/j.apgeochem.2022.105542 https://hdl.handle.net/11147/13572 |
ISSN: | 0883-2927 1872-9134 |
Appears in Collections: | Energy Systems Engineering / Enerji Sistemleri Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1-s2.0-S0883292722003468-main.pdf | 4.09 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
3
checked on Nov 23, 2024
WEB OF SCIENCETM
Citations
4
checked on Nov 9, 2024
Page view(s)
164
checked on Nov 25, 2024
Download(s)
86
checked on Nov 25, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.