Please use this identifier to cite or link to this item:
Title: Nanolifli yapıda, sinir büyüme faktörü yüklü mikro küreleri içeren jalatin bazlı doku iskelelerinin hazırlanması ve karakterizasyonu
Authors: Altınkaya, Sacide
Erdal, Esra
Büyüköz, Melda
Keywords: Doğal polimer
Doku iskelesi
Mikro kürecikler
Sinir doku mühendisliği
Publisher: TÜBİTAK - Türkiye Bilimsel ve Teknolojik Araştırma Kurumu
Abstract: In living organisms most of the tissues have the capability of regeneration; on the other hand, this situation is different in mammalian adult neural cells since they loose their ability of proliferation. Compared to peripheral nervous system, central nervous system has restricted regeneration capability which results in trauma, stroke and neuropathology etc. The first studies for the regeneration of nervous system concentrated on the use of autographs, tissue transplanted from one part of the body to another in the same individual, but it has limitations including short-age. Another type of investigation was allograft, which is transplantation of cells isolated from cadavers to the patient, but this approach is also not suitable because of host immune rejection. A new hope to cure neurodegenerative diseases appeared with biomaterials and tissue engineering studies. In this study, it is aimed to develop a novel, nanofibrous scaffolds with the capability of controlled releasing neural growth factor loaded in microspheres. Nanofibrous and oriented scaffolds were prepared from gelatin by a combination of thermally induced phase separation (TIPS), porogen-leaching and molding techniques while alginate microspheres were produced in oil in water emulsion through cross linking of alginate with calcium ions. The bioactivity of the growth factor released from microspheres was determined using PC12 cell line, derived from rat adrenal medulla and differentiate when treated with nerve growth factor. The scaffolds including connected pores with a high porosity, nanofibrous structure which mimic the extracellular matrix and properties similar to natural brain tissure were produced. Compared to solid walled scaffolds, nanofibrous scaffolds allow attachment of cells without any change in their morphologies. Model protein Į-chemotripsin and bovin serum albumin used for protecting the activity of nerve growth factor were loaded in alginate microspheres with an encapsulation efficiency of 100 %. It was found that NGF loaded into microspheres can maintain its activity and it can even differentiate PC-12 cells in a shorter time compared to NGF directly added into cell culture medium.
Appears in Collections:Chemical Engineering / Kimya Mühendisliği
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
document.pdfProject File3.45 MBAdobe PDFView/Open
Show full item record

CORE Recommender

Page view(s)

checked on May 20, 2024


checked on May 20, 2024

Google ScholarTM


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.