Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13214
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKorobkin, Alexanderen_US
dc.contributor.authorYılmaz, Oğuzen_US
dc.date.accessioned2023-03-08T13:23:02Z-
dc.date.available2023-03-08T13:23:02Z-
dc.date.issued2023-02-
dc.identifier.issn1070-6631-
dc.identifier.urihttps://doi.org/10.1063/5.0138868-
dc.identifier.urihttps://hdl.handle.net/11147/13214-
dc.description.abstractShort-time behavior of gravity-driven free surface flow of two fluids of equal depth and different densities is studied. Initially, the fluids are at rest and separated with a vertical rigid plate of negligible thickness. Then, the plate disappears suddenly and a gravity-driven flow of the fluids starts. The flow in an early stage is described by the potential theory. The initial flow in the leading order is described by a linear problem, which is solved by the Fourier series method. The motions of the interface between the fluids and their free surfaces are investigated. The singular behaviors of the velocity field at the bottom point, where the interface meets the rigid bottom, and the top point, where the interface meets both free surfaces, are analyzed in detail. The flow velocity is shown to be log-singular at the bottom point. The leading-order inner asymptotic solution is constructed in a small vicinity of this point. It is shown that the flow close to the bottom point is self-similar. The motion of the interface is independent of any parameters, including the density ratio, of the problem in specially stretched variables. In the limiting case of negligible density of one of the fluids, the results of the classical dam break problem are recovered. The Lagrangian representation is employed to capture the behavior of the interface and the free surfaces at the top, where the fluid interface meets the free surfaces. The shapes of the free surfaces and the interface in the leading order computed by using the Lagrangian variables show a jump discontinuity of the free surface near the top point where the free surfaces and the interface meet. Inner region formulation is derived near the top point.en_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Physicsen_US
dc.relationAkışkan-Yapı Etkileşimi Problemlerinde Birleşik Sayısal/Asimtotik Algoritmalar: Baraj Yıkımı İle Oluşan Akış Ve Diğer Uygulamalaren_US
dc.relation.ispartofPhysics of Fluidsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFourier seriesen_US
dc.subjectLagrange multipliersen_US
dc.subjectFlow velocityen_US
dc.subjectTime behavioren_US
dc.titleInitial stages of gravity-driven flow of two fluids of equal depthen_US
dc.typeArticleen_US
dc.authorid0000-0003-2159-1922en_US
dc.institutionauthorYılmaz, Oğuzen_US
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.wosWOS:000926659200003en_US
dc.identifier.scopus2-s2.0-85147845846en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1063/5.0138868-
dc.contributor.affiliationUniversity of East Angliaen_US
dc.contributor.affiliation01. Izmir Institute of Technologyen_US
dc.relation.issn1070-6631en_US
dc.description.volume35en_US
dc.description.issue2en_US
dc.relation.grantno111M209en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5.0138868.pdfArticle1.34 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

190
checked on Nov 18, 2024

Download(s)

120
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.