Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/12972
Title: | Fotokapan fotoğraflarında bazı hayvan türlerinin tespiti | Authors: | Baştanlar, Yalın | Keywords: | Hayvan tespiti fotokapan Görüntü tanıma Görüntü işleme Evrişimli sinir ağları Derin öğrenme |
Abstract: | Fotokapanlar dogada vahsi hayvanları gözlemlemek için kurulan hareket sensörlü kameralardır. Gelisen teknolojilerle birlikte fotokapan kullanımı ve dolayısıyla sahadan toplanan imge sayısı belirgin bir sekilde artmıstır. Tüm fotokapan görüntülerinin elden geçirilmesi ve içinde hayvan olup olmadıgının ve hangi hayvan oldugunun tespit edilmesi için gerekli isgücü de orantılı olarak artmaktadır. Çalısmamızda amaç, bu tespitleri otomatik yaparak doga arastırmacılarına gözle kontrol etmeleri gereken çok daha az sayıda fotograf bırakmaktır. Bu amaç dogrultusunda öncelikle asırı parlak, karanlık ve bulanık fotografların elenmesi için etkili teknikler arastırılmıstır. Bu kullanıssız fotografların elenmesinin ardından birinci hedef hayvan içeren fotografların tespitidir. Çalısmamızda, bunun için hem arkaplan çıkarımı ile nesne tespiti (fotokapanlar degismeyen arkaplanı bulunan sahneden degisen zaman aralıkları ile imge topladıgından) hem de evrisimli yapay sinir agları (EYSA) ile nesne bulma teknikleri bir arada kullanılarak hayvan içermeyen imgeleri ayıklayan bir sistem önerilmistir. Bir diger hedef de fotograflarda belirli bir hayvan türünün tespitidir. Bunun için de evrisimli yapay sinir aglarını (EYSA) belirli bir hayvan türünü bulmak için egitmek üzerine arastırma yapılmıs, parça-tabanlı egitime dayalı özgün bir yöntem önerilmistir. Ayrıca, gelistirilen eleme ve hayvan bulma yöntemlerin nasıl bir arayüz ile kullanıcıya aktarılması gerektigi ile ilgili de arastırma yapılmıs, bir yazılım prototipi gelistirilmistir. | URI: | https://hdl.handle.net/11147/12972 |
Appears in Collections: | Computer Engineering / Bilgisayar Mühendisliği TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
document.pdf | 2.02 MB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
200
checked on Nov 18, 2024
Download(s)
198
checked on Nov 18, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.