Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/12903
Title: | Improving Adhesive Behavior of Fiber Reinforced Composites by Incorporating Electrospun Polyamide-6,6 Nanofibers in Joining Region | Authors: | Esenoğlu, Gözde Barışık, Murat Tanoğlu, Metin Yeke, Melisa Türkdoğan, Ceren İplikçi, Hande Martin, Seçkin Nuhoğlu, Kaan Aktaş, Engin Dehneliler, Serkan |
Keywords: | Carbon fiber reinforced polymer Adhesive bonding Electrospinning nanofiber Polyamide-6,6 Interlaminar fracture Thickness |
Publisher: | SAGE Publications | Abstract: | Adhesive joining of fiber reinforced polymer (CFRP) composite components is demanded in various industrial applications. However, the joining locations frequently suffer from adhesive bond failure between adhesive and adherent. The aim of the present study is improving bonding behavior of adhesive joints by electrospun nanofiber coatings on the prepreg surfaces that have been used for composite manufacturing. Secondary bonding of woven and unidirectional CFRP parts was selected since this configuration is preferred commonly in aerospace practices. The optimum nanofiber coating with a low average fiber diameter and areal weight density is succeed by studying various solution concentrations and spinning durations of the polyamide-6.6 (PA 66) electrospinning. We obtained homogeneous and beadles nanofiber productions. As a result, an average diameter of 36.50 +/- 12 nm electrospun nanofibers were obtained and coated onto the prepreg surfaces. Prepreg systems with/without PA 66 nanofibers were hot pressed to fabricate the CFRP composite laminates. The single-lap shear test coupons were prepared from the fabricated laminates to examine the effects of PA 66 nanofibers on the mechanical properties of the joint region of the composites. The single-lap shear test results showed that the bonding strength is improved by about 40% with minimal adhesive use due to the presence of the electrospun nanofibers within the joint region. The optical and SEM images of fractured surfaces showed that nanofiber-coated joints exhibited a coherent failure while the bare surfaces underwent adhesive failure. The PA66 nanofibers created better coupling between the adhesive and the composite surface by increasing the surface area and roughness. As a result, electrospun nanofibers turned adhesive failure into cohesive and enhanced the adhesion performance composite joints substantially. | URI: | https://doi.org/10.1177/00219983221133478 https://hdl.handle.net/11147/12903 |
ISSN: | 0021-9983 1530-793X |
Appears in Collections: | Civil Engineering / İnşaat Mühendisliği Mechanical Engineering / Makina Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
00219983221133478.pdf | 1.89 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
6
checked on Dec 20, 2024
WEB OF SCIENCETM
Citations
6
checked on Dec 7, 2024
Page view(s)
264
checked on Dec 16, 2024
Download(s)
182
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.