Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/12882
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tumasyan, A. | - |
dc.contributor.author | CMS Collaboration | - |
dc.date.accessioned | 2023-02-05T13:23:27Z | - |
dc.date.available | 2023-02-05T13:23:27Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 1748-0221 | - |
dc.identifier.uri | https://doi.org/10.1088/1748-0221/17/07/P07023 | - |
dc.identifier.uri | https://hdl.handle.net/11147/12882 | - |
dc.description.abstract | A new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons (tau(h)) that originate from genuine tau leptons in the CMS detector against tau(h) candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a tau(h) candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine tau(h) to pass the discriminator against jets increases by 10-30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient tau(h) reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved tau(h) reconstruction method are validated with LHC proton-proton collision data at root s = 13 TeV. | en_US |
dc.description.sponsorship | BMBWF (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPERGS (Brazil); FAPESP (Brazil); MES (Bulgaria); BNSF (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); MINCIENCIAS (Colombia); MSES (Croatia); CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER (Estonia); ERC PUT (Estonia); ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRI (Greece); NKFIA (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP (Republic of Korea); NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE (Malaysia); UM (Malaysia); BUAP (Mexico); CINVESTAV (Mexico); CONACYT (Mexico); LNS (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Dubna); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); NRC KI (Russia); MESTD (Serbia); MCIN/AEI (Spain); PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter (Thailand); IPST (Thailand); STAR (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); STFC (U.K.); DOE (U.S.A.); NSF (U.S.A.); Marie-Curie program (European Union); European Research Council (European Union); Horizon 2020 Grant (European Union) [675440, 724704, 752730, 758316, 765710, 824093, 884104]; COST Action (European Union) [CA16108]; Leventis Foundation; Alfred P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); F.R.S.-FNRS (Belgium) under the Excellence of Science - EOS - be.h project [30820817]; FWO (Belgium) under the Excellence of Science - EOS - be.h project [30820817]; Being Municipal Science & Technology Commission [Z191100007219010]; Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Deutsche Forschungsgemeinschaft (DFG), under Germany's Excellence Strategy [EXC 2121, 390833306]; Deutsche Forschungsgemeinschaft (DFG) [400140256- GRK2497]; Lendulet (Momentum) Program of the Hungarian Academy of Sciences (Hungary); Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences (Hungary); New National Excellence Program UNKP (Hungary); NKFIA (Hungary) [123842, 123959, 124845, 124850, 125105, 128713, 128786, 129058]; Council of Science and Industrial Research, India; Latvian Council of Science; Ministry of Science and Higher Education (Poland); National Science Center (Poland) [Opus 2014/15/B/ST2/03998, 2015/19/B/ST2/02861]; Fundacao para a Ciencia e a Tecnologia (Portugal) [CEECIND/01334/2018]; National Priorities Research Program by Qatar National Research Fund; Ministry of Science and Higher Education (Russia) [0723-2020-0041, FSWW-2020-0008]; Russian Foundation for Basic Research (Russia) [19-42-703014]; ERDF a way of making Europe (Spain); Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia Maria de Maeztu (Spain) [MDM-2017-0765]; Programa Severo Ochoa del Principado de Asturias (Spain); Stavros Niarchos Foundation (Greece); Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); Kavli Foundation; Nvidia Corporation; SuperMicro Corporation; Welch Foundation [C-1845]; Weston Havens Foundation (U.S.A.) | en_US |
dc.description.sponsorship | We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria) ; FNRS and FWO (Belgium) ; CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil) ; MES and BNSF (Bulgaria) ; CERN; CAS, MoST, and NSFC (China) ; MINCIENCIAS (Colombia) ; MSES and CSF (Croatia) ; RIF (Cyprus) ; SENESCYT (Ecuador) ; MoER, ERC PUT and ERDF (Estonia) ; Academy of Finland, MEC, and HIP (Finland) ; CEA and CNRS/IN2P3 (France) ; BMBF, DFG, and HGF (Germany) ; GSRI (Greece) ; NKFIA (Hungary) ; DAE and DST (India) ; IPM (Iran) ; SFI (Ireland) ; INFN (Italy) ; MSIP and NRF (Republic of Korea) ; MES (Latvia) ; LAS (Lithuania) ; MOE and UM (Malaysia) ; BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico) ; MOS (Montenegro) ; MBIE (New Zealand) ; PAEC (Pakistan) ; MSHE and NSC (Poland) ; FCT (Portugal) ; JINR (Dubna) ; MON, RosAtom, RAS, RFBR, and NRC KI (Russia) ; MESTD (Serbia) ; MCIN/AEI and PCTI (Spain) ; MOSTR (Sri Lanka) ; Swiss Funding Agencies (Switzerland) ; MST (Taipei) ; ThEPCenter, IPST, STAR, and NSTDA (Thailand) ; TUBITAK and TAEK (Turkey) ; NASU (Ukraine) ; STFC (U.K.) ; DOE and NSF (U.S.A.) .; Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 884104, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the Excellence of Science - EOS - be.h project n. 30820817; the Being Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), under Germany's Excellence Strategy- EXC 2121 Quantum Universe - 390833306, and under project number 400140256- GRK2497; the Lendulet (Momentum) Program and the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program UNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the Latvian Council of Science; the Ministry of Science and Higher Education and the National Science Center, contracts Opus 2014/15/B/ST2/03998 and 2015/19/B/ST2/02861 (Poland); the Fundacao para a Ciencia e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, projects no. 0723-2020-0041 and no. FSWW-2020-0008, and the Russian Foundation for Basic Research, project No. 19-42-703014 (Russia); MCIN/AEI/10.13039/501100011033, ERDF a way of making Europe, and the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia Maria de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Stavros Niarchos Foundation (Greece); the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (U.S.A.). | en_US |
dc.language.iso | en | en_US |
dc.publisher | IOP Publishing Ltd | en_US |
dc.relation.ispartof | Journal of Instrumentation | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Large detector systems for particle and astroparticle physics | en_US |
dc.subject | Particle identification methods | en_US |
dc.subject | Pattern recognition | en_US |
dc.subject | cluster finding | en_US |
dc.subject | calibration and fitting methods | en_US |
dc.title | Identification of hadronic tau lepton decays using a deep neural network | en_US |
dc.type | Article | en_US |
dc.department | İzmir Institute of Technology. Rectorate | en_US |
dc.identifier.volume | 17 | en_US |
dc.identifier.issue | 7 | en_US |
dc.identifier.wos | WOS:000867442500009 | en_US |
dc.identifier.scopus | 2-s2.0-85135918744 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1088/1748-0221/17/07/P07023 | - |
dc.identifier.wosquality | Q4 | - |
dc.identifier.scopusquality | Q3 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
Appears in Collections: | Rectorate / Rektörlük Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
34
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
31
checked on Nov 9, 2024
Page view(s)
128
checked on Nov 18, 2024
Download(s)
36
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.