Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12882
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTumasyan, A.-
dc.contributor.authorAdam, W.-
dc.contributor.authorAndrejkovic, J.W.-
dc.contributor.authorBergauer, T.-
dc.contributor.authorChatterjee, S.-
dc.contributor.authorDragicevic, M.-
dc.contributor.authorAndreev, V.-
dc.date.accessioned2023-02-05T13:23:27Z-
dc.date.available2023-02-05T13:23:27Z-
dc.date.issued2022-
dc.identifier.issn1748-0221-
dc.identifier.urihttps://doi.org/10.1088/1748-0221/17/07/P07023-
dc.description.abstractA new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons (τ h) that originate from genuine tau leptons in the CMS detector against τ h candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a τ h candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine τ h to pass the discriminator against jets increases by 10-30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient τ h reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved τ h reconstruction method are validated with LHC proton-proton collision data at s = 13 TeV. © 2022 CERN.en_US
dc.description.sponsorshipHorizon 2020 Framework Programme, H2020, (824093, 758316, 884104, 675440, 765710, 724704, 752730); Horizon 2020 Framework Programme, H2020en_US
dc.language.isoenen_US
dc.publisherInstitute of Physicsen_US
dc.relation.ispartofJournal of Instrumentationen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCalibration And Fitting Methodsen_US
dc.subjectCluster Findingen_US
dc.subjectLarge Detector Systems For Particle And Astroparticle Physicsen_US
dc.subjectParticle Identification Methodsen_US
dc.subjectPattern Recognitionen_US
dc.titleIdentification of Hadronic Tau Lepton Decays Using a Deep Neural Networken_US
dc.typeArticleen_US
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume17en_US
dc.identifier.issue7en_US
dc.identifier.wosWOS:000867442500009-
dc.identifier.scopus2-s2.0-85135918744-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1088/1748-0221/17/07/P07023-
dc.authorscopusid35222495600-
dc.authorscopusid56217303000-
dc.authorscopusid57222730792-
dc.authorscopusid56236454000-
dc.authorscopusid55470759900-
dc.authorscopusid58189557300-
dc.authorscopusid56465957600-
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ3-
dc.description.woscitationindexScience Citation Index Expanded-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
Appears in Collections:Rectorate / Rektörlük
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
12882.pdf1.47 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

45
checked on May 16, 2025

WEB OF SCIENCETM
Citations

38
checked on May 17, 2025

Page view(s)

192
checked on May 12, 2025

Download(s)

56
checked on May 12, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.