Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12878
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAbedinifar, Masoud-
dc.contributor.authorErtuğrul, Şeniztr
dc.contributor.authorArgüz, Serdar Hakantr
dc.date.accessioned2023-02-05T13:23:26Z-
dc.date.available2023-02-05T13:23:26Z-
dc.date.issued2022-
dc.identifier.issn0263-5747-
dc.identifier.issn1469-8668-
dc.identifier.urihttps://doi.org/10.1017/S0263574722001783-
dc.identifier.urihttps://hdl.handle.net/11147/12878-
dc.description.abstractThe identification of nonlinear terms existing in the dynamic model of real-world mechanical systems such as robotic manipulators is a challenging modeling problem. The main aim of this research is not only to identify the unknown parameters of the nonlinear terms but also to verify their existence in the model. Generally, if the structure of the model is provided, the parameters of the nonlinear terms can be identified using different numerical approaches or evolutionary algorithms. However, finding a non-zero coefficient does not guarantee the existence of the nonlinear term or vice versa. Therefore, in this study, a meticulous investigation and statistical verification are carried out to ensure the reliability of the identification process. First, the simulation data are generated using the white-box model of a direct current motor that includes some of the nonlinear terms. Second, the particle swarm optimization (PSO) algorithm is applied to identify the unknown parameters of the model among many possible configurations. Then, to evaluate the results of the algorithm, statistical hypothesis and confidence interval tests are implemented. Finally, the reliability of the PSO algorithm is investigated using experimental data acquired from the UR5 manipulator. To compare the results of the PSO algorithm, the nonlinear least squares errors (NLSE) estimation algorithm is applied to identify the unknown parameters of the nonlinear models. The result shows that the PSO algorithm has higher identification accuracy than the NLSE estimation algorithm, and the model with identified parameters using the PSO algorithm accurately calculates the output torques of the joints of the manipulator.en_US
dc.language.isoenen_US
dc.publisherCambridge University Pressen_US
dc.relation.ispartofRoboticaen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNonlinear model identificationen_US
dc.subjectHypothesis testen_US
dc.subjectConfidence interval testen_US
dc.subjectParticle swarm optimizationen_US
dc.subjectUR5 manipulatoren_US
dc.subjectParticle swarm optimizationen_US
dc.subjectRobotsen_US
dc.titleNonlinear model identification and statistical verification using experimental data with a case study of the UR5 manipulator joint parametersen_US
dc.typeArticleen_US
dc.institutionauthorArgüz, Serdar Hakan-
dc.departmentİzmir Institute of Technology. Mechanical Engineeringen_US
dc.identifier.wosWOS:000901878100001en_US
dc.identifier.scopus2-s2.0-85150013559en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıtr
dc.identifier.doi10.1017/S0263574722001783-
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeArticle-
item.cerifentitytypePublications-
Appears in Collections:Mechanical Engineering / Makina Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
nonlinear-model.pdf2.11 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 22, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 9, 2024

Page view(s)

140
checked on Nov 25, 2024

Download(s)

70
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.