Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/12878
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Abedinifar, Masoud | - |
dc.contributor.author | Ertuğrul, Şeniz | tr |
dc.contributor.author | Argüz, Serdar Hakan | tr |
dc.date.accessioned | 2023-02-05T13:23:26Z | - |
dc.date.available | 2023-02-05T13:23:26Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 0263-5747 | - |
dc.identifier.issn | 1469-8668 | - |
dc.identifier.uri | https://doi.org/10.1017/S0263574722001783 | - |
dc.identifier.uri | https://hdl.handle.net/11147/12878 | - |
dc.description.abstract | The identification of nonlinear terms existing in the dynamic model of real-world mechanical systems such as robotic manipulators is a challenging modeling problem. The main aim of this research is not only to identify the unknown parameters of the nonlinear terms but also to verify their existence in the model. Generally, if the structure of the model is provided, the parameters of the nonlinear terms can be identified using different numerical approaches or evolutionary algorithms. However, finding a non-zero coefficient does not guarantee the existence of the nonlinear term or vice versa. Therefore, in this study, a meticulous investigation and statistical verification are carried out to ensure the reliability of the identification process. First, the simulation data are generated using the white-box model of a direct current motor that includes some of the nonlinear terms. Second, the particle swarm optimization (PSO) algorithm is applied to identify the unknown parameters of the model among many possible configurations. Then, to evaluate the results of the algorithm, statistical hypothesis and confidence interval tests are implemented. Finally, the reliability of the PSO algorithm is investigated using experimental data acquired from the UR5 manipulator. To compare the results of the PSO algorithm, the nonlinear least squares errors (NLSE) estimation algorithm is applied to identify the unknown parameters of the nonlinear models. The result shows that the PSO algorithm has higher identification accuracy than the NLSE estimation algorithm, and the model with identified parameters using the PSO algorithm accurately calculates the output torques of the joints of the manipulator. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Cambridge University Press | en_US |
dc.relation.ispartof | Robotica | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Nonlinear model identification | en_US |
dc.subject | Hypothesis test | en_US |
dc.subject | Confidence interval test | en_US |
dc.subject | Particle swarm optimization | en_US |
dc.subject | UR5 manipulator | en_US |
dc.subject | Particle swarm optimization | en_US |
dc.subject | Robots | en_US |
dc.title | Nonlinear model identification and statistical verification using experimental data with a case study of the UR5 manipulator joint parameters | en_US |
dc.type | Article | en_US |
dc.institutionauthor | Argüz, Serdar Hakan | - |
dc.department | İzmir Institute of Technology. Mechanical Engineering | en_US |
dc.identifier.wos | WOS:000901878100001 | en_US |
dc.identifier.scopus | 2-s2.0-85150013559 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | tr |
dc.identifier.doi | 10.1017/S0263574722001783 | - |
dc.identifier.wosquality | Q3 | - |
dc.identifier.scopusquality | Q2 | - |
item.fulltext | With Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
item.grantfulltext | open | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Mechanical Engineering / Makina Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
nonlinear-model.pdf | 2.11 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
5
checked on Nov 22, 2024
WEB OF SCIENCETM
Citations
4
checked on Nov 9, 2024
Page view(s)
140
checked on Nov 25, 2024
Download(s)
70
checked on Nov 25, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.