Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12824
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAtik, Cerentr
dc.contributor.authorTekir, Selmatr
dc.date.accessioned2023-01-30T10:27:41Z-
dc.date.available2023-01-30T10:27:41Z-
dc.date.issued2022-
dc.identifier.issn1302-9304-
dc.identifier.urihttps://doi.org/10.21205/deufmd.2022247109-
dc.identifier.urihttps://hdl.handle.net/11147/12824-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1110196-
dc.description.abstractTechnological developments such as artificial intelligence can strengthen social prejudices prevailing in society, regardless of the developer's intention. Therefore, researchers should be aware of the ethical issues that may arise from a developed product/solution. In this study, we investigate the effect of gender bias on occupational classification. For this purpose, a new dataset was created by collecting obituaries from the New York Times website and is provided in two different versions: With and without gender indicators. Category distributions from this dataset show that gender and occupation variables have dependence. Thus, gender affects occupation classification. To test the effect, we perform occupation classification using SVM (Support Vector Machine), HAN (Hierarchical Attention Network), and DistilBERT-based classifiers. Moreover, to get further insights into the relationship of gender and occupation in classification problems, a multi-tasking model in which occupation and gender are learned together is evaluated. Experimental results reveal that there is a gender bias in job classification.en_US
dc.description.abstractYapay zeka gibi teknolojik yenilikler, geliştiricilerin niyetlerinden bağımsız olarak toplumda mevcut olan ön yargıyı arttırabilirler. Bu sebeple, araştırmacılar geliştirilen bir ürün/çözüm ile birlikte gelebilecek etik sorunların farkında olmalıdırlar. Bu çalışmada, sosyal ön yargılardan biri olan cinsiyet yanlılığının meslek sınıflandırması üzerindeki etkisi araştırılmaktadır. Bunun için New York Times web sitesinden anma yazıları toplanarak yeni bir veri kümesi oluşturulmuş ve bu anma yazıları cinsiyet göstergeleri dahil ve hariç olmak üzere iki farklı versiyonuyla sunulmuştur. Bu veri kümesindeki sınıf dağılışları incelendiğinde cinsiyet ve meslek değişkenleri arasında bir bağımlılık ilişkisi görülmektedir. Dolayısıyla cinsiyet göstergelerinin meslek tahmini üzerinde bir etkisi olması beklenmektedir. Bu etkiyi sınamak üzere, SVM (Karar Destek Makineleri), HAN (Hiyerarşik İlgi Ağı) ve DistilBERT algoritmaları kullanılarak meslek sınıflandırması yapılmıştır. Sadece meslek sınıflandırması yapan bu modellerin yanında meslek ve cinsiyetin eş zamanlı öğrenildiği bir model de değerlendirilmiştir. Deneysel sonuçlar, meslek tahmininde cinsiyet yanlılığının etkili olduğunu ortaya koymaktadır.tr
dc.language.isoenen_US
dc.publisherDokuz Eylül Üniversitesien_US
dc.relation.ispartofDokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisitr
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGender biasen_US
dc.subjectOccupation classificationen_US
dc.subjectMulti-task learningen_US
dc.subjectObituariesen_US
dc.titleGender Bias in Occupation Classification From the New York Times Obituariesen_US
dc.title.alternativeNew York Times anma yazılarından meslek sınıflandırmasında cinsiyet yanlılığıtr
dc.typeArticleen_US
dc.authorid0000-0002-0488-9682en_US
dc.institutionauthorTekir, Selmatr
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıtr
dc.identifier.doi10.21205/deufmd.2022247109-
dc.relation.issn1302-9304en_US
dc.description.volume24en_US
dc.description.issue71en_US
dc.description.startpage425en_US
dc.description.endpage436en_US
dc.identifier.trdizinid1110196en_US
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Gender Bias.pdfArticle File1.04 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

268
checked on Dec 23, 2024

Download(s)

108
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.