Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/12692
Title: | A compact finite difference method of lines for solving non-linear partial differential equations | Other Titles: | Doğrusal olmayan kısmi diferansiyel denklemlerin çözümü için bir kompakt sonlu farklar çizgiler yöntemi | Authors: | Ismoilov, Shodijon | Advisors: | Tanoğlu, Gamze Gürarslan, Gürhan |
Keywords: | Partial differential equations Compact finite difference Numerical solutions |
Publisher: | Izmir Institute of Technology | Abstract: | In this thesis, an efficient numerical method is proposed for the numerical solution of the chemical reaction-diffusion model governed by a non-linear system of partial differential equations known as a Brusselator model. The method proposed is based on a combination of higher-order Compact Finite Difference schemes and stable time integrator known as an adaptive step-size Runge-Kutta method. The performance of adaptive step-size Runge-Kutta formula of fifth-order accurate in time and Compact Finite Difference scheme of sixth-order in space are investigated. The method is implemented to solve three test problems and reveals that the method is capable of achieving high efficiency, accuracy and reliability. The results obtained are sufficiently accurate compared to some available results in the literature. Bu tezde, kimyasal reaksiyon-difüzyon modeli olan ve Brusselator Modeli olarak da bilinen doğrusal olmayan kısmi diferansiyel denklem sisteminin çözümü için bir sayısal yöntem önerilmiştir. Önerilen yöntem yüksek mertebeden Kompakt Sonlu Fark şemaları ve kararlı zaman tümlev alıcısı, bilinen adıyla adaptif hesap adımlı Runge Kutta yönteminin kombinasyonuna dayanmaktadır. Uzayda altıncı mertebeden Kompakt Sonlu Fark Şeması ve zamanda ise beşinci mertebeden Adaptif Hesap Adımlı Runge-Kutta yönteminın performansı incelenmiştir. Yöntem üç adet test problemine uygulanmıştır ve yüksek hassasiyette (doğrulukta) çözümler elde edilmiştir. Aynı zamanda yöntemin verimli ve güvenilir olduğu ortaya çıkmıştır. Elde edilen sonuçlar literatürdeki diğer sonuçlarla uyuşmaktadır. |
Description: | Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2022 Includes bibliographical references (leaves. 45-48) Text in English; Abstract: Turkish and English |
URI: | https://hdl.handle.net/11147/12692 https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=qVqOZFj2DwNmvdf1oGFYiNvCI9SubNmcoW1sx1HgV5GLagM97lYWLzCCbvPI8V2E |
Appears in Collections: | Master Degree / Yüksek Lisans Tezleri |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10492324.pdf | Master Thesis File | 1.16 MB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
232
checked on Nov 18, 2024
Download(s)
938
checked on Nov 18, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.