Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12584
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzsarı, Türkeren_US
dc.contributor.authorAlkan, Kıvılcımen_US
dc.contributor.authorKalimeris, Konstantinosen_US
dc.date.accessioned2022-10-31T11:45:08Z-
dc.date.available2022-10-31T11:45:08Z-
dc.date.issued2022-04-
dc.identifier.urihttps://doi.org/10.7153/mia-2022-25-34-
dc.identifier.urihttps://hdl.handle.net/11147/12584-
dc.description.abstractIn this paper, we prove dispersion estimates for the boundary integral operator associated with the fourth order Schr¨odinger equation posed on the half line. Proofs of such estimates for domains with boundaries are rare and generally require highly technical approaches, as opposed to our simple treatment which is based on constructing a boundary integral operator of oscillatory nature via the Fokas method. Our method is uniform and can be extended to other higher order partial differential equations where the main equation possibly involves more than one spatial derivatives.en_US
dc.language.isoenen_US
dc.publisherElement d.o.o.en_US
dc.relationDördüncü Mertebeden Doğrusal Olmayan Schrödinger Denklemlerinin Sınırı Olan Bölgelerde Homojen Olmayan Sınır Koşulları Altında Analizi Ve Kontrol Teorisien_US
dc.relation.ispartofMathematical Inequalities and Applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSchrödinger equationen_US
dc.subjectUnified transform methoden_US
dc.subjectFokas methoden_US
dc.titleDispersion estimates for the boundary integral operator associated with the fourth order Schrödinger equation posed on the half lineen_US
dc.typeArticleen_US
dc.authorid0000-0003-4240-5252en_US
dc.institutionauthorAlkan, Kıvılcımen_US
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.wosWOS:000835761500001en_US
dc.identifier.scopus2-s2.0-85147669198en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.7153/mia-2022-25-34-
dc.relation.issn1331-4343en_US
dc.description.volume25en_US
dc.description.issue2en_US
dc.description.startpage551en_US
dc.description.endpage571en_US
dc.relation.grantno117F449en_US
dc.identifier.scopusqualityQ2-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept04.02. Department of Mathematics-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2110.01223TOA.pdfArticle (Makale)750.01 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Feb 16, 2024

WEB OF SCIENCETM
Citations

2
checked on Feb 10, 2024

Page view(s)

94
checked on Feb 19, 2024

Download(s)

42
checked on Feb 19, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.