Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12524
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorÇetkin, Erdalen_US
dc.contributor.authorŞahin, Resul Çağtayen_US
dc.date.accessioned2022-10-06T11:33:04Z-
dc.date.available2022-10-06T11:33:04Z-
dc.date.issued2022-06en_US
dc.identifier.urihttps://hdl.handle.net/11147/12524-
dc.identifier.urihttps://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=sELqxhTlFGAjsbjOuuiyCNWKrlaklSATqa63wg2cDwZ9xthrNiy3SHYVqgyoyyx2-
dc.descriptionThesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2022en_US
dc.descriptionIncludes bibliographical references (leaves. 48-57)en_US
dc.descriptionText in English; Abstract: Turkish and Englishen_US
dc.description.abstractLithium-ion battery packs are preferred in Electrical and Hybrid Vehicles (EVs and HEVs) due to their efficient and stable energy storage characteristics. Battery Thermal Management Systems (BTMS) have vital importance in EVs and HEVs to keep the batteries in desired temperature range to maximize performance and lifetime. Air cooling is a well-known method with the advantages of being simple and light but main concern for air cooling is effectiveness and pressure drops due to low heat capacity and thermal conductivity of air. This work compared various cooling designs for battery modules based on the surface temperature of batteries and the parasitic power consumption. Modules were built with COMSOL Multiphysics 5.5, and their accuracy was validated by experiments. Each module involves an equal number of batteries whose thermal characteristics were simulated by the electrochemical-thermal battery model, the P3D multiscale model. As a result, the maximum temperature was reduced by 5% (1.8°C) for inline alignment with baffles and 7.2% (2.8°C) for staggered modules, and the temperature gradient was reduced by 40% (1.7°C) for inline and 35% (1.5°C) for staggered alignments. While fan power consumption of inline alignment with triangle baffles (0.98W) was 3.5 times higher than the base design (0.27W), it was 0.23W for staggered design. Moreover, the cooling performance of different winglet parameters was compared and documented.en_US
dc.description.abstractDiğer alternatiflerinden daha verimli ve sağlıklı çalıştıkları için Lityum-iyon bataryalar, günümüz elektrikli araçlarında en çok tercih edilen batarya türüdür. Ancak, Lityum-iyon bataryaların ömrü ve verimliği çalışma koşullarına bağımlıdır. Çalışma sıcaklığı batarya sağlığını etkilediği ve ölümcül kazalara yol açabileceği için dikkatle kontrol edilmelidir. Bu etkileri en aza indirmek, güvenli ve stabil bir kullanım sağlamak için batarya termal yönetim sistemleri (BTYS) elektrikli araçlar için hayati öneme sahiptir. Halihazırda kullanılan birçok verimli metot olmasına rağmen, hava soğutmalı batarya paketleri gerek hafif ve basit tasarım özellikleri gerekse ucuz üretim ve bakım maliyetleri bakımından halen elektrikli araç üreticileri tarafından tercih edilmektedir. Havanın termofiziksel özellikleri nedeniyle hava soğutmalı batarya paketlerinin performansı sıvı soğutma metotlarına nazaran düşük kalmaktadır. Bu nedenle hava soğutmalı sistemlerin iyileştirilmesi gerekmektedir. Bu tez, silindirik bataryalardan oluşan hava soğutmalı bir batarya modülünün performansını, bataryaların fazla ısındığı bölgelerdeki akışı çeşitli akış karıştırıcılarla değiştirerek ısı transferini arttırmayı ve homojen bir batarya sıcaklık dağılımı sağlamayı amaçlamaktadır. Tasarım iyileştirmeleri, COMSOL Multiphysics 5.5 yazılımı ile türbülanslı akış ve P3D olarak da bilinen batarya termal modelini birleştirerek oluşturulan simülasyonlar yardımı ile yapılmıştır. Ayrıca, simülasyonların tutarlılığı deneysel verilerle karşılaştırılarak doğrulanmıştır. Sonuç olarak, hizalanmış yerleşimdeki batarya modülünde maksimum sıcaklıklar %5 (1.8ºC) ve sıcaklık dağılımı 40% (1.7ºC) akış karıştırıcılar yardımı ile iyileştirilmiştir. Ayrıca, çapraz konumlandırılmış bataryalar maksimum sıcaklığı ve sıcaklık dağılımını sırasıyla, %7.2 (2.8ºC) ve %35 (2.5ºC) iyileştirmiştir. Son olarak, bu iyileştirmeler yeni tasarım için yaklaşık 0.7W’lık bir güç tüketimi artışı ile sağlanmıştır.en_US
dc.format.extentxiv, 61 leavesen_US
dc.language.isoenen_US
dc.publisherIzmir Institute of Technologyen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectBattery thermal managementen_US
dc.subjectP3D modelen_US
dc.subjectTemperature uniformityen_US
dc.subjectCooling efficiencyen_US
dc.subjectForced air convectionen_US
dc.titleNumerical investigation of various heat transfer mechanisms on thermal management of a lithium-ion battery packen_US
dc.title.alternativeÇeşitli ısı geçişi mekanizmalarının bir lityum-iyon batarya paketinin ısıl yönetimi için sayısal olarak incelenmesien_US
dc.typeMaster Thesisen_US
dc.authorid0000-0002-5186-6395en_US
dc.departmentThesis (Master)--İzmir Institute of Technology, Mechanical Engineeringen_US
dc.relation.publicationcategoryTezen_US
dc.identifier.yoktezid746960en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypeMaster Thesis-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Master Degree / Yüksek Lisans Tezleri
Files in This Item:
File Description SizeFormat 
10470218.pdfMaster Thesis4.34 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

234
checked on Apr 29, 2024

Download(s)

212
checked on Apr 29, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.