Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12476
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKüçükoğlu, Sefa Furkanen_US
dc.contributor.authorDede, Mehmet İsmet Canen_US
dc.contributor.authorCeccarelli, Marcoen_US
dc.date.accessioned2022-09-26T07:37:48Z-
dc.date.available2022-09-26T07:37:48Z-
dc.date.issued2022-
dc.identifier.issn2211-0984-
dc.identifier.urihttps://doi.org/10.1007/978-3-031-10776-4_25-
dc.identifier.urihttps://hdl.handle.net/11147/12476-
dc.description.abstractIdentifying the model of a magneto-rheological (MR) fluid-based brake is extremely important for designing and controlling a haptic device with hybrid actuation. Therefore, in this study, an Elman Recurrent Neural Network (ERNN) is designed to understand and model a characterization of an MR fluid-based rotational brake. Three important factors that affect the MR brake’s performance are chosen as inputs: current, speed, and the first derivative of the input current. The proposed network is trained, and the performance of the network is tested with three different experimental scenarios. Then, the effect of these inputs on the system is investigated. According to the results, it can be said that the designed ERNN is a good candidate for modelling an MR brake.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofMechanisms and Machine Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHaptic devicesen_US
dc.subjectHybrid actuation systemen_US
dc.subjectElman recurrent neural networken_US
dc.subjectMagneto-Rheological (MR)en_US
dc.titleModeling a magneto-rheological fluid-based brake via a neural network methoden_US
dc.typeConference Objecten_US
dc.authorid0000-0001-8083-2306en_US
dc.authorid0000-0001-6220-6678en_US
dc.institutionauthorKüçükoğlu, Sefa Furkanen_US
dc.institutionauthorDede, Mehmet İsmet Canen_US
dc.departmentİzmir Institute of Technology. Mechanical Engineeringen_US
dc.identifier.scopus2-s2.0-85135843773en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference4th International Conference of the IFToMM Italy, IFIT 2022en_US
dc.relation.publicationAdvances in Italian Mechanism Science: Proceedings of the 4th International Conference of IFToMM Italyen_US
dc.identifier.doi10.1007/978-3-031-10776-4_25-
dc.relation.isbn978-303110775-7en_US
dc.relation.doi10.1007/978-3-031-10776-4en_US
dc.relation.issn2211-0984en_US
dc.description.volume122 MMSen_US
dc.description.startpage211en_US
dc.description.endpage218en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ4-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept01. Izmir Institute of Technology-
crisitem.author.dept03.10. Department of Mechanical Engineering-
Appears in Collections:Mechanical Engineering / Makina Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

238
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.