Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12468
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMortazavi, Bohayraen_US
dc.contributor.authorFazel Shojaeien_US
dc.contributor.authorYağmurcukardeş, Mehmeten_US
dc.contributor.authorAlexander Shapeeven_US
dc.contributor.authorXiaoying Zhuangen_US
dc.date.accessioned2022-09-23T06:20:04Z-
dc.date.available2022-09-23T06:20:04Z-
dc.date.issued2022-11en_US
dc.identifier.urihttps://doi.org/10.1016/j.carbon.2022.08.077-
dc.identifier.urihttps://hdl.handle.net/11147/12468-
dc.description.abstractGraphene-like nanomembranes made of the neighboring elements of boron, carbon and nitrogen elements, are well-known of showing outstanding physical properties. Herein, with the aid of density functional theory (DFT) calculations, various atomic configurations of the graphene-like BCN nanosheets are investigated. DFT results reveal that depending on the atomic arrangement, the BCN monolayers may display semimetallic Dirac cone or semiconducting electronic nature. BCN nanosheets are also found to exhibit high piezoelectricity and carrier mobilities with considerable in-plane anisotropy, depending on the atomic arrangement. For the predicted most stable BCN monolayer, thermal and mechanical properties are explored using machine learning interatomic potentials. The room temperature tensile strength and lattice thermal conductivity of the most stable BCN monolayer are estimated to be orientation-dependent and remarkably high, over 78 GPa and 290 W/m.K, respectively. In addition, the thermal expansion coefficient of the monolayer BCN at room temperature is estimated to be −3.2 × 10−6 K−1, which is close to that of the graphene. The piezoelectric response of the herein proposed BCN lattice is also predicted to be close to that of the h-BN monolayer. Presented results highlight outstanding physics of the BCN nanosheets.en_US
dc.publisherElsevieren_US
dc.relation.ispartofCarbonen_US
dc.subjecth-BCNen_US
dc.subjectMachine learningen_US
dc.subjectThermal conductivityen_US
dc.subjectPiezoelectricen_US
dc.titleAnisotropic and outstanding mechanical, thermal conduction, optical, and piezoelectric responses in a novel semiconducting BCN monolayer confirmed by first-principles and machine learningen_US
dc.typeArticleen_US
dc.authorid0000-0002-1416-7990-
dc.institutionauthorYağmurcukardeş, Mehmet-
dc.departmentİzmir Institute of Technology. Photonicsen_US
dc.identifier.wosWOS:000860659200005en_US
dc.identifier.scopus2-s2.0-85137651796en_US
dc.identifier.doi10.1016/j.carbon.2022.08.077-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.04. Department of Photonics-
crisitem.author.dept04.04. Department of Photonics-
Appears in Collections:Photonics / Fotonik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
1-s2.0-S000862232200700X-main.pdf5.9 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

25
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

23
checked on Nov 9, 2024

Page view(s)

288
checked on Nov 18, 2024

Download(s)

98
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.